您好,欢迎来到百家汽车网。
搜索
您的当前位置:首页Compressed Sensing

Compressed Sensing

来源:百家汽车网
IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.52,NO.4,APRIL200612

CompressedSensing

DavidL.Donoho,Member,IEEE

Abstract—Supposeisanunknownvectorin(adigitalimageorsignal);weplantomeasuregenerallinearfunctionalsofandthenreconstruct.Ifisknowntobecompressiblebytransformcodingwithaknowntransform,andwerecon-structviathenonlinearproceduredefinedhere,thenumberofmeasurementscanbedramaticallysmallerthanthesize.Thus,certainnaturalclassesofimageswithpixelsneedonly

5214

=(log())nonadaptivenonpixelsamplesforfaithfulrecovery,asopposedtotheusualpixelsamples.Morespecifically,supposehasasparserepresentationinsomeorthonormalbasis(e.g.,wavelet,Fourier)ortightframe(e.g.,curvelet,Gabor)—sothecoefficientsbelongtoanballfor01.Themostimportantcoefficientsinthatexpansionallowreconstructionwith2error(121).Itispossibletodesign=(log())nonadaptivemeasurementsallowingreconstructionwithaccuracycomparabletothatattain-ablewithdirectknowledgeofthemostimportantcoefficients.Moreover,agoodapproximationtothoseimportantcoeffi-cientsisextractedfromthemeasurementsbysolvingalinearprogram—BasisPursuitinsignalprocessing.Thenonadaptivemeasurementshavethecharacterof“random”linearcombi-nationsofbasis/frameelements.Ourresultsusethenotionsofoptimalrecovery,of-widths,andinformation-basedcomplexity.WeestimatetheGel’fand-widthsofballsinhigh-dimensionalEuclideanspaceinthecase01,andgiveacriterionidentifyingnear-optimalsubspacesforGel’fand-widths.Weshowthat“most”subspacesarenear-optimal,andshowthatconvexoptimization(BasisPursuit)isanear-optimalwaytoextractinformationderivedfromthesenear-optimalsubspaces.IndexTerms—Adaptivesampling,almost-sphericalsectionsofBanachspaces,BasisPursuit,eigenvaluesofrandommatrices,Gel’fand-widths,information-basedcomplexity,integratedsensingandprocessing,minimum1-normdecomposition,op-timalrecovery,Quotient-of-a-Subspacetheorem,sparsesolutionoflinearequations.

theimportantinformationaboutthesignals/images—ineffect,notacquiringthatpartofthedatathatwouldeventuallyjustbe“thrownaway”bylossycompression.Moreover,theprotocolsarenonadaptiveandparallelizable;theydonotrequireknowl-edgeofthesignal/imagetobeacquiredinadvance—otherthanknowledgethatthedatawillbecompressible—anddonotat-temptany“understanding”oftheunderlyingobjecttoguideanactiveoradaptivesensingstrategy.Themeasurementsmadeinthecompressedsensingprotocolareholographic—thus,notsimplepixelsamples—andmustbeprocessednonlinearly.Inspecificapplications,thisprinciplemightenabledra-maticallyreducedmeasurementtime,dramaticallyreducedsamplingrates,orreduceduseofanalog-to-digitalconverterresources.

A.TransformCompressionBackground

Ourtreatmentisabstractandgeneral,butdependsononespe-cificassumptionwhichisknowntoholdinmanysettingsofsignalandimageprocessing:theprincipleoftransformsparsity.Wesupposethattheobjectofinterestisavector,whichcanbeasignalorimagewithsamplesorpixels,andthatthere

forwhichcanisanorthonormalbasis

be,forexample,anorthonormalwaveletbasis,aFourierbasis,oralocalFourierbasis,dependingontheapplication.(Asex-plainedlater,theextensiontotightframessuchascurveletorGaborframescomesforfree.)Theobjecthastransformcoeffi-,andtheseareassumedsparseinthesensecients

andforsomethat,forsome

(I.1)

Suchconstraintsareactuallyobeyedonnaturalclassesofsig-nalsandimages;thisistheprimaryreasonforthesuccessof

standardcompressiontoolsbasedontransformcoding[1].Tofixideas,wementiontwosimpleexamplesofconstraint.•BoundedVariationmodelforimages.Hereimagebright-nessisviewedasanunderlyingfunctiononthe

,whichobeys(essentially)unitsquare

I.INTRODUCTION

A

Sourmoderntechnology-drivencivilizationacquiresand

exploitsever-increasingamountsofdata,“everyone”nowknowsthatmostofthedataweacquire“canbethrownaway”withalmostnoperceptualloss—witnessthebroadsuccessoflossycompressionformatsforsounds,images,andspecializedtechnicaldata.Thephenomenonofubiquitouscompressibilityraisesverynaturalquestions:whygotosomuchefforttoac-quireallthedatawhenmostofwhatwegetwillbethrownaway?Canwenotjustdirectlymeasurethepartthatwillnotendupbeingthrownaway?

Inthispaper,wedesigncompresseddataacquisitionproto-colswhichperformasifitwerepossibletodirectlyacquirejust

ManuscriptreceivedSeptember18,2004;revisedDecember15,2005.

TheauthoriswiththeDepartmentofStatistics,StanfordUniversity,Stanford,CA94305USA(e-mail:donoho@stanford.edu).

CommunicatedbyA.Høst-Madsen,AssociateEditorforDetectionandEstimation.

DigitalObjectIdentifier10.1109/TIT.2006.871582

Thedigitaldataofinterestconsistofpixelsam-plesofproducedbyaveragingoverpixels.Wetakeawaveletpointofview;thedataareseenasasu-perpositionofcontributionsfromvariousscales.Letdenotethecomponentofthedataatscale,andlet

denotetheorthonormalbasisofwaveletsatscale,con-elements.Thecorrespondingcoefficientstaining

.obey

0018-9448/$20.00©2006IEEE

1290•

BumpAlgebramodelforspectra.Hereaspectrum(e.g.,massspectrumormagneticresonancespectrum)is

modeledasdigitalsamples

ofanunderlyingfunctiononthereallinewhichisasuperpositionofso-calledspectrallinesofvaryingpositions,amplitudes,andlinewidths.Formally

Heretheparametersarelinelocations,areampli-tudes/polarities,andarelinewidths,andrepresentsalineshape,forexampletheGaussian,althoughotherpro-filescouldbeconsidered.Weassumetheconstraintwhere

,whichinapplicationsrepresentsanen-ergyortotalmassconstraint.Againwetakeawaveletviewpoint,thistimespecificallyusingsmoothwavelets.Thedatacanberepresentedasasuperpositionofcon-tributionsfromvariousscales.Let

denotethecom-ponentofthespectrumatscale,andlet

denotetheorthonormalbasisofwaveletsatscale,containingelements.Thecorrespondingcoefficientsagainobey

,[2].

Whileinthesetwoexamples,theconstraintappeared,otherconstraintswithcanappearnaturallyaswell;seebelow.Forsomereaders,theuseofnormswithmayseeminitiallystrange;itisnowwellunderstoodthatthenormswithsuchsmallarenaturalmathematicalmeasuresofsparsity[3],[4].Asdecreasesbelow,moreandmoresparsity

isbeingrequired.Also,fromthisviewpoint,an

constraintbasedon

requiresnosparsityatall.Notethatineachoftheseexamples,wealsoallowedforsep-aratingtheobjectofinterestintosubbands,eachoneofwhich

obeysan

constraint.Inpractice,inthefollowingwestickwiththeviewthattheobjectofinterestisacoefficientvectorobeyingtheconstraint(I.1),whichmaymean,fromanapplica-tionviewpoint,thatourmethodscorrespondtotreatingvarioussubbandsseparately,asintheseexamples.

Thekeyimplicationofthe

constraintissparsityofthetransformcoefficients.Indeed,wehavetriviallythat,ifde-notesthevectorwitheverythingexceptthelargestcoeffi-cientssetto

(I.2)

for

,withaconstantdependingonlyon

.Thus,forexample,toapproximatewitherror,we

needtokeeponlythebiggesttermsin.B.OptimalRecovery/Information-BasedComplexity

Background

Ourquestionnowbecomes:ifisanunknownsignalwhose

transformcoefficientvector

obeys(I.1),canwemakeareducednumber

ofmeasurementswhichwillallowfaithfulreconstructionof.Suchquestionshavebeendiscussed(forothertypesofassumptionsabout)underthenamesofOptimalRecovery[5]andInformation-BasedComplexity[6];wenowadopttheirviewpoint,andpartiallyadopttheirnota-tion,withoutmakingaspecialefforttobereallyorthodox.We

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.52,NO.4,APRIL2006

use“OR/IBC”asagenericlabelforworktakingplaceinthosefields,admittedlybeinglessthanencyclopedicaboutvariousscholarlycontributions.

Wehaveaclass

ofpossibleobjectsofinterest,andareinterestedindesigninganinformationoperator

thatsamplespiecesofinformationabout,andanalgorithm

thatoffersanapproximatereconstructionof.

Heretheinformationoperatortakestheform

wherethearesamplingkernels,notnecessarilysamplingpixelsorothersimplefeaturesofthesignal;however,theyare

nonadaptive,i.e.,fixedindependentlyof.Thealgorithm

isanunspecified,possiblynonlinearreconstructionoperator.Weareinterestedintheerrorofreconstructionandinthebehaviorofoptimalinformationandoptimalalgorithms.Hence,weconsidertheminimaxerrorasastandardofcomparison

Sohere,allpossiblemethodsofnonadaptivelinearsamplingareallowed,andallpossiblemethodsofreconstructionareallowed.Inourapplication,theclassofobjectsofinterestistheset

ofobjects

whereobeys(I.1)foragivenand.Denotethen

Ourgoalistoevaluateandtohavepracticalschemeswhichcomeclosetoattainingit.C.FourSurprises

Hereisthemainquantitativephenomenonofinterestforthispaper.

Theorem1:Let

beasequenceofproblemsizeswith

,,and,,.Thenforthereis

sothat

(I.3)

Wefindthissurprisinginfourways.First,compare(I.3)with(I.2).Weseethattheformsaresimilar,underthecalibration

.Inwords:thequalityofapproximationto

whichcouldbegottenbyusingthebiggesttransformcoef-ficientscanbegottenbyusingthe

piecesofnonadaptiveinformationprovidedby.Thesurpriseisthatwewouldnotknowinadvancewhichtransformcoefficientsarelikelytobetheimportantonesinthisapproximation,yetthe

optimalinformationoperator

isnonadaptive,dependingatmostontheclassandnotonthespecificobject.Insomesensethisnonadaptiveinformationisjustaspowerfulasknowingthebesttransformcoefficients.

Thisseemsevenmoresurprisingwhenwenotethatforob-jects

,thetransformrepresentationistheoptimalone:nootherrepresentationcandoaswellatcharacterizingbyafewcoefficients[3],[7].Surelythen,oneimagines,

thesamplingkernels

underlyingtheoptimalinformationDONOHO:COMPRESSEDSENSINGoperatormustbesimplymeasuringindividualtransformcoef-ficients?Actually,no:theinformationoperatorismeasuringverycomplex“holographic”functionalswhichinsomesensemixtogetherallthecoefficientsinabigsoup.Compare(VI.1)below.(Holographyisaprocesswhereathree–dimensional(3-D)imagegeneratesbyinterferometryatwo–dimensional(2-D)transform.Eachvalueinthe2-Dtransformdomainisinfluencedbyeachpartofthewhole3-Dobject.The3-Dobjectcanlaterbereconstructedbyinterferometryfromallorevenapartofthe2-Dtransformdomain.Leavingasidethespecificsof2-D/3-Dandtheprocessofinterferometry,weperceiveananalogyhere,inwhichanobjectistransformedtoacompresseddomain,andeachcompresseddomaincomponentisacombinationofallpartsoftheoriginalobject.)

Anothersurpriseisthat,ifweenlargedourclassofinforma-tionoperatorstoallowadaptiveones,e.g.,operatorsinwhichcertainmeasurementsaremadeinresponsetoearliermeasure-ments,wecouldscarcelydobetter.Definetheminimaxerror

underadaptiveinformation

allowingadaptiveoperatorswhere,for,eachkernelisallowedtodependontheinformationgatheredatpreviousstages.Formallysetting

wehavethefollowing.Theorem2:For

,thereis

sothatfor

Soadaptiveinformationisofminimalhelp—despitethequitenaturalexpectationthatanadaptivemethodoughttobeableiterativelysomehow“localize”andthen“closein”onthe“bigcoefficients.”

Anadditionalsurpriseisthat,inthealready-interestingcase,Theorems1and2areeasilyderivablefromknownresultsinOR/IBCandapproximationtheory!However,thederivationsareindirect;soalthoughtheyhavewhatseemtotheauthorasfairlyimportantimplications,verylittleseemsknownatpresentaboutgoodnonadaptiveinformationoperatorsoraboutconcretealgorithmsmatchedtothem.

Ourgoalinthispaperistogivedirectargumentswhichcover

thecase

ofhighlycompressibleobjects,togivedi-rectinformationaboutnear-optimalinformationoperatorsandaboutconcrete,computationallytractablealgorithmsforusingthisnear-optimalinformation.D.GeometryandWidths

Fromourviewpoint,thephenomenondescribedinThe-orem1concernsthegeometryofhigh-dimensionalconvexandnonconvex“balls.”Toseetheconnection,notethattheclass

istheimage,underorthogonaltransformation,of

anball.Ifthisisconvexandsymmetricabouttheorigin,aswellasbeingorthosymmetricwithrespecttotheaxes

1291

providedbythewaveletbasis;if

,thisisagainsymmetricabouttheoriginandorthosymmetric,whilenotbeingconvex,butstillstar-shaped.

Todevelopthisgeometricviewpointfurther,weconsidertwonotionsof-width;see[5].

Definition1.1:TheGel’fand-widthof

withrespectto

the

normisdefinedaswheretheinfimumisover-dimensionallinearsubspacesof,anddenotestheorthocomplementofwithrespecttothestandardEuclideaninnerproduct.

Inwords,welookforasubspacesuchthat“trapping”

inthatsubspacecausestobesmall.OurinterestinGel’fand-widthsderivesfromanequivalencebetweenoptimalrecoveryfornonadaptiveinformationandsuch-widths,wellknownin

the

case[5],andinthepresentsettingextendingasfollows.

Theorem3:For

and

(I.4)(I.5)

ThustheGel’fand-widthseitherexactlyornearlyequalthevalueofoptimalinformation.Ultimately,thebracketingwith

constant

willbeforusjustasgoodasequality,owingtotheunspecifiedconstantfactorsin(I.3).Wewilltypicallyonlybeinterestedinnear-optimalperformance,i.e.,inobtainingtowithinconstantfactors.

ItisrelativelyraretoseetheGel’fand-widthsstudieddirectly[8];morecommonly,oneseesresultsabouttheKolmogorov-widths.Definition1.2:Letbeaboundedset.The

Kolmogorov-widthofwithrespectthenormisdefined

as

wheretheinfimumisover-dimensionallinearsubspaces

of.

Inwords,measuresthequalityofapproximationofpossibleby-dimensionalsubspaces.

Inthecase

,thereisanimportantdualityrelationshipbetweenKolmogorovwidthsandGel’fandwidthswhichallows

ustoinferpropertiesof

frompublishedresultson.Tostateit,letbedefinedintheobviousway,basedonapproximationinratherthannorm.Also,forgivenand,letandbethestandarddualindices

,.Also,letdenotethestandardunit

ballof.Then[8]

(I.6)

Inparticular

1292Theasymptoticpropertiesoftheleft-handsidehavebeende-terminedbyGarnaevandGluskin[9].ThisfollowsmajorworkbyKashin[10],whodevelopedaslightlyweakerversionofthisresultinthecourseofdeterminingtheKolmogorov-widthsofSobolevspaces.Seetheoriginalpapers,orPinkus’sbook[8]formoredetails.

Theorem4:(Kashin,Garnaev,andGluskin(KGG))Foralland

Theorem1nowfollowsinthecasebyapplyingKGGwiththedualityformula(I.6)andtheequivalenceformula(I.4).

Thecase

ofTheorem1doesnotallowuseofdualityandthewholerangeisapproacheddifferentlyinthispaper.

E.Mysteries…

BecauseoftheindirectmannerbywhichtheKGGresultim-pliesTheorem1,wereallydonotlearnmuchaboutthephenom-enonofinterestinthisway.TheargumentsofKashin,Garnaev,andGluskinshowthatthereexistnear-optimal-dimensionalsubspacesfortheKolmogorovwidths;theyariseasthenull

spacesofcertainmatriceswithentries

whichareknowntoexistbycountingthenumberofmatriceslackingcertainprop-erties,thetotalnumberofmatriceswith

entries,andcom-paring.Theinterpretabilityofthisapproachislimited.

Theimplicitnessoftheinformationoperatorismatchedbytheabstractnessofthereconstructionalgorithm.BasedonOR/IBCtheoryweknowthattheso-calledcentralalgorithmisoptimal.This“algorithm”asksustoconsider,forgiven

information

,thecollectionofallobjectswhichcouldhavegivenrisetothedata

Definingnowthecenterofaset

center

thecentralalgorithmis

center

anditobeys,whentheinformationisoptimal,

seeSectionIIIbelow.

Thisabstractviewpointunfortunatelydoesnottranslateinto

apracticalapproach(atleastinthecaseofthe

,).Thesetisasectionoftheball,andfindingthecenterofthissectiondoesnotcorre-spondtoastandardtractablecomputationalproblem.Moreover,thisassumesweknowand,whichwouldtypicallynotbethecase.

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.52,NO.4,APRIL2006

F.Results

Ourpaperdevelopstwomaintypesofresults.

•Near-OptimalInformation.Wedirectlyconsidertheproblemofnear-optimalsubspacesforGel’fand-widths

of

,andintroducethreestructuralconditions(CS1–CS3)onan-by-matrixwhichimplythatitsnullspaceisnear-optimal.Weshowthatthevastmajority

of-subspacesof

arenear-optimal,andrandomsamplingyieldsnear-optimalinformationoperatorswithoverwhelminglyhighprobability.

•Near-OptimalAlgorithm.Westudyasimplenonlinearre-constructionalgorithm:simplyminimizethenormofthecoefficientssubjecttosatisfyingthemeasurements.ThishasbeenstudiedinthesignalprocessingliteratureunderthenameBasisPursuit;itcanbecomputedbylinearprogramming.Weshowthatthismethodgivesnear-op-timalresultsforall

.Inshort,weprovidealargesupplyofnear-optimalinfor-mationoperatorsandanear-optimalreconstructionprocedurebasedonlinearprogramming,which,perhapsunexpectedly,

worksevenforthenonconvexcase

.Foratasteofthetypeofresultweobtain,consideraspecificinformation/algorithmcombination.

•CSInformation.Letbean

matrixgeneratedbyrandomlysamplingthecolumns,withdifferentcolumnsindependentandidenticallydistributed(i.i.d.)random

uniformon

.Withoverwhelmingprobabilityforlarge,

haspropertiesCS1–CS3discussedindetailinSectionII-Abelow;assumewehaveachievedsucha

favorabledraw.Letbethe

basismatrixwithbasisvector

asthethcolumn.TheCSInformationoperator

isthematrix.•-minimization.ToreconstructfromCSInformation,wesolvetheconvexoptimizationproblem

subjectto

Inwords,welookfortheobjecthavingcoefficientswithsmallestnormthatisconsistentwiththeinforma-tion.

Toevaluatethequalityofaninformationoperator,set

Toevaluatethequalityofacombinedalgorithm/information

pair

,setTheorem5:Let,beasequenceofproblemsizes

obeying

,,;andletbeacorrespondingsequenceofoperatorsderivingfromCSmatriceswithunderlyingparametersand(seeSectionIIbelow).Let

.Thereexistssothatisnear-optimal:

DONOHO:COMPRESSEDSENSINGfor,.Moreover,thealgorithmdelivering

thesolutiontoisnear-optimal:

for,.

Thus,forlarge,wehaveasimpledescriptionofnear-op-timalinformationandatractablenear-optimalreconstructionalgorithm.

G.PotentialApplications

Toseethepotentialimplications,recallfirsttheBumpAl-gebramodelforspectra.Inthiscontext,ourresultsaysthat,foraspectrometerbasedontheinformationoperatorinThe-orem5,itisreallyonlynecessarytotake

measurementstogetanaccuratereconstructionofsuchspectra,ratherthanthenominalmeasurements.However,theymustthenbeprocessednonlinearly.

RecalltheBoundedVariationmodelforimages.Inthatcon-text,aresultparallelingTheorem5saysthatforaspecializedimagingdevicebasedonanear-optimalinformationoperatorit

isreallyonlynecessarytotake

measure-mentstogetanaccuratereconstructionofimageswithpixels,ratherthanthenominalmeasurements.

Thecalculationsunderlyingtheseresultswillbegivenbelow,alongwitharesultshowingthatforcartoon-likeimages(whichmaymodelcertainkindsofsimplenaturalimagery,likebrainscans),thenumberofmeasurementsforan-pixelimageis

only.H.Contents

SectionIIintroducesasetofconditionsCS1–CS3for

near-optimalityofaninformationoperator.SectionIIIconsidersabstractnear-optimalalgorithms,andprovesTheorems1–3.SectionIVshowsthatsolvingtheconvexoptimizationproblem

givesanear-optimalalgorithmwhenever.Sec-tionVpointsoutimmediateextensionstoweak-conditionsandtotightframes.SectionVIsketchespotentialimplicationsinimage,signal,andarrayprocessing.SectionVII,buildingonworkin[11],showsthatconditionsCS1–CS3aresatisfiedfor“most”informationoperators.

Finally,inSectionVIII,wenotetheongoingworkbytwogroups(Gilbertetal.[12]andCandèsetal.[13],[14]),whichalthoughnotwritteninthe-widths/OR/IBCtradition,imply(asweexplain),closelyrelatedresults.

II.INFORMATION

Considerinformationoperatorsconstructedasfollows.Withtheorthogonalmatrixwhosecolumnsarethebasiselements,andwithcertain-by-matricesobeyingconditionsspecifiedbelow,weconstructcorrespondinginformationoper-ators

.Everythingwillbecompletelytransparenttothechoiceoforthogonalmatrixandhencewewillassumethatistheidentitythroughoutthissection.

InviewoftherelationbetweenGel’fand-widthsandmin-imaxerrors,wemayworkwith-widths.Letdenoteas

1293

usualthenullspace

.Wedefinethewidthofaset

relativetoanoperator

subjectto

(II.1)

Inwords,thisistheradiusofthesectionof

cutoutbythenullspace.Ingeneral,theGel’fand-widthisthesmallestvalueofobtainablebychoiceof

isan

matrix

Wewillshowforalllargeand

theexistenceof

by

matriceswhere

withdependentatmostonandtheratio.

A.ConditionsCS1–CS3

Inthefollowing,withletdenoteasub-matrixofobtainedbyselectingjusttheindicatedcolumnsof.Weletdenotetherangeofin.Finally,weconsiderafamilyofquotientnormson;withdenotingthenormonvectorsindexedby

subjectto

Thesedescribetheminimal-normrepresentationofachiev-ableusingonlyspecifiedsubsetsofcolumnsof.

Wedefinethreeconditionstoimposeonan

matrix,indexedbystrictlypositiveparameters,

,and.CS1:Theminimalsingularvalueofexceeds

uniformlyin.

CS2:Oneachsubspace

wehavetheinequalityuniformlyin

.

CS3:Oneachsubspace

uniformlyin.

CS1demandsacertainquantitativedegreeoflinearindepen-denceamongallsmallgroupsofcolumns.CS2saysthatlinearcombinationsofsmallgroupsofcolumnsgivevectorsthatlookmuchlikerandomnoise,atleastasfarasthecomparisonofandnormsisconcerned.Itwillbeimpliedbyageometric

fact:every

slicesthroughtheballinsuchawaythattheresultingconvexsectionisactuallyclosetospherical.CS3saysthatforeveryvectorinsome,theassociatedquotient

normisneverdramaticallysmallerthanthesimplenormon

.Itturnsoutthatmatricessatisfyingtheseconditionsareubiq-uitousforlargeandwhenwechoosetheandproperly.Ofcourse,foranyfiniteand,allnormsareequivalentandalmostanyarbitrarymatrixcantriviallysatisfytheseconditionssimplybytakingverysmalland,verylarge.However,thedefinitionof“verysmall”and“verylarge”wouldhaveto

1294dependonforthistrivialargumenttowork.Weclaimsome-thingdeeperistrue:itispossibletochooseandindependent

ofandof

.Considertheset

ofallmatriceshavingunit-normalizedcolumns.Onthisset,measurefrequencyofoccurrencewiththenaturaluniform

measure(theproductmeasure,uniformoneachfactor).Theorem6:Letbeasequenceofproblemsizeswith

,,and,,and.There

exist

anddependingonlyonandsothat,foreach

theproportionofallmatricessatisfyingCS1–CS3withparametersandeventuallyexceeds.WewilldiscussandprovethisinSectionVII.Theproofwillshowthattheproportionofmatricesnotsatisfyingtheconditiondecaysexponentiallyfastin.

Forlateruse,wewillleavetheconstantsandimplicitandspeaksimplyofCSmatrices,meaningmatricesthatsatisfythegivenconditionswithvaluesofparametersofthetypedescribedbythistheorem,namely,withandnotdependingonandpermittingtheaboveubiquity.B.Near-OptimalityofCSMatrices

WenowshowthattheCSconditionsimplynear-optimalityofwidthsinducedbyCSmatrices.

Theorem7:Let

beasequenceofproblemsizeswithand.Considerasequenceofby

matricesobeyingtheconditionsCS1–CS3withandpositiveandindependentof.Thenforeach,thereis

sothatfor

Proof:Considertheoptimizationproblem

subjectto

Ourgoalistoboundthevalueof

Choosesothat.Letdenotetheindicesofthe

largestvaluesin.Withoutlossofgenerality,

supposecoordinatesareorderedsothatcomesfirstamong

theentries,andpartition

.Clearly(II.2)

while,becauseeachentryin

isatleastasbigasanyentryin

,(I.2)gives

(II.3)

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.52,NO.4,APRIL2006

Asimilarargumentforapproximationgives,incase

(II.4)

Now

.Hence,with,wehave.As

and,wecan

invokeCS3,getting

Ontheotherhand,againusing

and

,invokeCS2,getting

Combiningthesewiththeabove

with.Recalling,

andinvokingCS1wehave

Inshort,with

Thetheoremfollowswith

III.ALGORITHMS

Givenaninformationoperator,wemustdesignarecon-structionalgorithm

whichdeliversreconstructionscompat-ibleinqualitywiththeestimatesfortheGel’fand-widths.AsdiscussedintheIntroduction,theoptimalmethodintheOR/IBCframeworkistheso-calledcentralalgorithm,whichunfortu-nately,istypicallynotefficientlycomputableinoursetting.Wenowdescribeanalternateabstractapproach,allowingustoproveTheorem1.A.Feasible-PointMethods

AnothergeneralabstractalgorithmfromtheOR/IBClitera-tureistheso-calledfeasible-pointmethod,whichaimssimplytofindanyreconstructioncompatiblewiththeobservedinfor-mationandconstraints.

Asinthecaseofthecentralalgorithm,weconsider,forgiven

information

,thecollectionofallobjectswhichcouldhavegivenrisetotheinformation

DONOHO:COMPRESSEDSENSING1295

Inthefeasible-pointmethod,wesimplyselectanymemberof

,bywhatevermeans.Onecanshow,adaptingstandard

OR/IBCargumentsin[15],[6],[8]thefollowing.Lemma3.1:Letwhereisanoptimalinformationoperator,andlet

.Thenfor

and

beanyelementof

withand

whereforgiven

B.ProofofTheorem3

(III.1)

Beforeproceeding,itisconvenienttoproveTheorem3.Note

iswellknowninOR/IBCsoweonlyneedtothatthecase

(thoughithappensthatourargumentgiveanargumentfor

aswell).Thekeypointwillbetoapplytheworksfor

-triangleinequality

Inshort,anyfeasiblepointiswithinafactortwoofoptimal.

Proof:Wefirstjustifyourclaimsforoptimalityofthecen-tralalgorithm,andthenshowthatafeasiblepointisneartothe

denotetheresultofthecentralcentralalgorithm.Letagain

algorithm.Nowradius

Nowclearly,inthespecialcasewhenisonlyknowntoliein

andismeasured,theminimaxerroris

exactlyradius.Sincethiserrorisachievedbythecentralalgorithmforeachsuch,theminimaxerroroverallisachievedbythecentralalgorithm.Thisminimaxerroris

radius

validfor;thisinequalityiswellknownininterpola-tiontheory[17]throughPeetreandSparr’swork,andiseasytoverifydirectly.

Supposewithoutlossofgeneralitythatthereisanoptimalsubspace,whichisfixedandgiveninthisproof.Aswejustsaw

radius

Now

radius

Nowthefeasiblepointobeys

radius

;hence,

soclearly.Nowsupposewithoutlossofgeneralitythat

andattaintheradiusbound,i.e.,theysatisfyand,forcentertheysatisfy

Butthetriangleinequalitygives

Thendefine.Set.Bythe-triangleinequality

radius

radius

and

hence,as

andso

Hence

Moregenerally,iftheinformationoperatoroptimal,thenthesameargumentgives

isonlynear-(III.2)

Apopularchoiceoffeasiblepointistotakeanelementofleastnorm,i.e.,asolutionoftheproblem

subjectto

wherehereisthevectoroftransformcoefficients,

.Anicefeatureofthisapproachisthatitisnotnecessary

;theelementofleasttoknowtheradiusoftheball

normwillalwayslieinsideit.Forlateruse,callthesolution

.Bytheprecedinglemma,thisprocedureisnear-minimax:

sobelongstoand

.However,

.Hence,

C.ProofofTheorem1

WearenowinapositiontoproveTheorem1oftheIntroduction.

,wehavealreadyexplainedintheFirst,inthecase

IntroductionthatthetheoremofGarnaevandGluskinimplies

1296theresultbyduality.Inthecase,weneedonlytoshowalowerboundandanupperboundofthesameorder.Forthelowerbound,weconsidertheentropynumbers,de-finedasfollows.Letbeasetandlet

bethesmallestnumbersuchthatan-netfor

canbebuiltusinganetofcardinalityatmost.FromCarl’stheorem[18]—seetheex-positioninPisier’sbook[19]—thereisaconstant

sothattheGel’fand-widthsdominatetheentropynumbers.

Secondly,theentropynumbersobey[20],[21]

Atthesametime,thecombinationofTheorems7and6shows

that

ApplyingnowtheFeasiblePointmethod,wehave

withimmediateextensionstoforall.

Weconcludethat

aswastobeproven.D.ProofofTheorem2

NowisanopportunetimetoproveTheorem2.Wenotethat

inthecaseof

,thisisknown[22]–[25].Theargumentisthesamefor

,andwesimplyrepeatit.Supposethat,andconsidertheadaptivelyconstructedsubspaceac-cordingtowhateveralgorithmisinforce.Whenthealgorithmterminates,wehavean-dimensionalinformationvectorand

asubspace

consistingofobjectswhichwouldallgivethatinformationvector.Forallobjectsin,theadaptiveinforma-tionthereforeturnsoutthesame.Nowtheminimaxerrorasso-ciatedwiththatinformationisexactlyradius;butthiscannotbesmallerthan

radius

Theresultfollowsbycomparing

with.

IV.BASISPURSUIT

Theleast-normmethodoftheprevioussectionhastwodraw-backs.First,itrequiresthatoneknow;wepreferanalgo-rithmwhichworksfor

.Second,if,theleast-normprobleminvokesanonconvexoptimizationproce-dure,andwouldbeconsideredintractable.Inthissection,wecorrectbothdrawbacks.

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.52,NO.4,APRIL2006

A.TheCase

Inthecase,isaconvexoptimizationproblem.Writteninanequivalentform,withbeingtheoptimizationvariable,gives

subjectto

Thiscanbeformulatedasalinearprogrammingproblem:letbethebymatrix.Thelinearprogram

LP

subjectto

(IV.1)

hasasolution,say,avectorinwhichcanbepartitionedas;thensolves.Therecon-struction

is.Thislinearprogramistypicallyconsid-eredcomputationallytractable.Infact,thisproblemhasbeenstudiedinthesignalanalysisliteratureunderthenameBasisPursuit[26];inthatwork,verylarge-scaleunderdetermined

problems—e.g.,with

and—weresolvedsuccessfullyusinginterior-pointoptimizationmethods.

Asfarasperformancegoes,wealreadyknowthatthispro-cedureisnear-optimalincase

;from(III.2)wehavethefollowing.

Corollary4.1:Supposethatisaninformationoperator

achieving,forsome

thentheBasisPursuitalgorithmachieves,for

all

Inparticular,wehaveauniversalalgorithmfordealingwith

anyclass

—i.e.,any,any,any.First,applyanear-optimalinformationoperator;second,reconstructbyBasisPursuit.Theresultobeys

foraconstantdependingatmoston.The

inequalitycanbeputtouseasfollows.Fix

.Supposetheunknownobjectisknowntobehighlycompressible,

sayobeyingtheaprioribound

,.Let.Foranysuchobject,ratherthanmaking

measurements,weonlyneedtomake

measurements,andourreconstructionobeys

Whilethecaseisalreadysignificantandinteresting,the

case

isofinterestbecauseitcorrespondstodatawhicharemorehighlycompressible,offeringmoreimpressiveperformanceinTheorem1,becausetheexponentisevenstrongerthaninthecase.Laterinthissection,

weextendthesameinterpretationof

toperformanceoverthroughout.

DONOHO:COMPRESSEDSENSINGB.RelationBetweenandMinimization

ThegeneralOR/IBCtheorywouldsuggestthattohandle

caseswhere

,wewouldneedtosolvethenonconvexoptimizationproblem,whichseemsintractable.However,inthecurrentsituationatleast,asmallmiraclehappens:solving

isagainnear-optimal.Tounderstandthis,wefirsttakeasmalldetour,examiningtherelationbetweenandtheextremecaseofthespaces.Letusdefine

subjectto

whereisjustthenumberofnonzerosin.Again,sincetheworkofPeetreandSparr[16],theimportanceofandthe

relationwithfor

iswellunderstood;see[17]formoredetail.

Ordinarily,solvingsuchaprobleminvolvingthenormre-quirescombinatorialoptimization;oneenumeratesallsparse

subsetsof

searchingforonewhichallowsasolu-tion

.However,whenhasasparsesolution,willfindit.

Theorem8:SupposethatsatisfiesCS1–CS3withgivenpositiveconstants,.Thereisaconstantdepending

onlyonand

andnotonorsothat,ifsomesolutiontohasatmostnonzeros,thenand

bothhavethesameuniquesolution.

Inwords,althoughthesystemofequationsismassivelyunderdetermined,minimizationandsparsesolutioncoin-cide—whentheresultissufficientlysparse.

Thereisbynowanextensiveliteratureexhibitingresultson

equivalenceof

andminimization[27]–[34].Intheearlyliteratureonthissubject,equivalencewasfoundundercondi-tionsinvolvingsparsityconstraintsallowing

nonzeros.Whileitmayseemsurprisingthatanyresultsofthiskindare

possible,thesparsityconstraint

is,ultimately,disappointinglysmall.Amajorbreakthroughwasthecontribu-tionofCandès,Romberg,andTao[13]whichstudiedthema-tricesbuiltbytakingrowsatrandomfromanbyFourier

matrixandgaveanorder

bound,showingthatdramaticallyweakersparsityconditionswereneededthanthe

resultsknownpreviously.In[11],itwasshownthat

for’nearlyall’by

matriceswith,equiv-alenceheldfor

nonzeros,.Theabovere-sultsayseffectivelythatfor’nearlyall’bymatriceswith

,equivalencehelduptononzeros,

where

.Ourargument,inparallelwith[11],showsthatthenullspace

hasaveryspecialstructureforobeyingtheconditions

inquestion.Whenissparse,theonlyelementinagivenaffine

subspace

whichcanhavesmallnormisitself.ToproveTheorem8,wefirstneedalemmaaboutthenon-sparsityofelementsinthenullspaceof.Letand,foragivenvector,letdenotethemutilated

vectorwithentries

.Definetheconcentration1297

Thismeasuresthefractionofnormwhichcanbeconcen-tratedonacertainsubsetforavectorinthenullspaceof.This

concentrationcannotbelargeif

issmall.Lemma4.1:SupposethatsatisfiesCS1–CS3,withcon-stantsand.Thereisaconstant

dependingonthesothatifsatisfiesthen

Proof:ThisisavariationontheargumentforTheorem7.

Let

.Assumewithoutlossofgeneralitythatisthemostconcentratedsubsetofcardinality

,andthatthecolumnsofarenumberedsothat

;partition.Weagainconsider,andhave

.WeagaininvokeCS2–CS3,getting

WeinvokeCS1,gettingNow,ofcourse,

.Combiningallthese

Thelemmafollows,setting.

ProofofTheorem8:Supposethatandissup-portedonasubset.

Wefirstshowthatif

,istheonlyminimizerof.Supposethatisasolutionto,obeyingThen

where

.WehaveInvokingthedefinitionoftwice

Now

gives

andwehave

i.e.,.

Nowrecalltheconstant

ofLemma4.1.Defineso

that

and.Lemma4.1showsthat

implies

.

C.Near-OptimalityofBasisPursuitfor

Wenowreturntotheclaimednear-optimalityofBasisPursuitthroughouttherange.Theorem9:SupposethatsatisifiesCS1–CS3withcon-stantsand.Thereissothatasolu-tiontoaprobleminstanceofwithobeysTheproofrequiresanstabilitylemma,showingthesta-bilityofminimizationundersmallperturbationsasmeasuredinnorm.Forandstabilitylemmas,see[33]–[35];how-ever,notethatthoselemmasdonotsufficeforourneedsinthisproof.

1298Lemma4.2:Letbeavectorinand

bethecorre-spondingmutilatedvectorwithentries.Supposethat

where.Considertheinstanceof

definedby;thesolutionofthisinstanceof

obeys

(IV.2)

ProofofLemma4.2:Putforshort,andset

.Bydefinitionofwhile

Assolves

andofcourseHence,

Finally

Combiningtheabove,setting,and

,

weget

and(IV.2)follows.

ProofofTheorem9:Weusethesamegeneralframework

asinTheorem7.Let

where.Letbethesolutionto

,andset.Let

asinLemma4.1andset.Letindexthelargestamplitudeentriesin.From

and(II.4)wehaveandLemma4.1providesApplyingLemma4.2

(IV.3)

Thevectorliesin

andhas

.

Hence,

WeconcludebyhomogeneitythatCombiningthiswith(IV.3),

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.52,NO.4,APRIL2006

V.IMMEDIATEEXTENSIONS

Beforecontinuing,wementiontwoimmediateextensionstotheresultssofar;theyareofinterestbelowandelsewhere.A.TightFrames

Ourmainresultssofarhavebeenstatedinthecontextofmakinganorthonormalbasis.Infact,theresultsholdfortightframes.Thesearecollectionsofvectorswhich,whenjoinedto-getherascolumnsinan

matrixhave.Itfollowsthat,if,thenwehavethe

Parsevalrelation

andthereconstructionformula.Infact,Theorems7and9onlyneedtheParsevalrelationintheproof.Hence,thesameresultsholdwithoutchangewhentherelationbetweenandinvolvesatightframe.Inparticular,ifisanmatrix

satisfyingCS1–CS3,then

definesanear-optimalinformationoperatoron

,andsolutionoftheoptimizationproblem

definesanear-optimalreconstructionalgorithm.

Arefereeremarkedthatthereisnoneedtorestrictattentiontotightframeshere;ifwehaveageneralframethesameresultsgothrough,withconstantsinvolvingtheframebounds.Thisistrueandpotentiallyveryuseful,althoughwewillnotuseitinwhatfollows.B.Weak

Balls

Ourmainresultssofarhavebeenstatedforspaces,butthe

proofsholdforweakballsaswell

.Theweakballofradiusconsistsofvectorswhosedecreasingrearrange-ments

obeyConversely,foragiven,thesmallestforwhichthesein-equalitiesallholdisdefinedtobethenorm:

.The“weak”monikerderivesfrom

.Weakcon-straintshavethefollowingkeyproperty:if

denotesamuti-latedversionofthevectorwithallexceptthelargestitemssettozero,thentheinequality

(V.1)

isvalidforand,with.Infact,Theorems7and9onlyneeded(V.1)intheproof,togetherwith

(implicitly)

.Hence,wecanstateresultsforspaces

definedusingonlyweak-norms,andtheproofsapplywithoutchange.

VI.STYLIZEDAPPLICATIONS

Wesketchthreepotentialapplicationsoftheaboveabstracttheory.Ineachcase,weexhibitthatacertainclassoffunctions

DONOHO:COMPRESSEDSENSINGhasexpansioncoefficientsinabasisorframethatobeyapartic-ularorweakembedding,andthenapplytheaboveabstracttheory.

A.BumpAlgebra

Considertheclassoffunctionswhicharerestrictionstotheunitintervaloffunctionsbelongingtothe

BumpAlgebra[2],withbumpnorm

.ThiswasmentionedintheIntroduction,whichobservedthatthewavelet

coefficientsatlevelobey

wherede-pendsonlyonthewaveletused.Hereandlaterweusestandardwaveletanalysisnotationsasin[36],[37],[2].

Weconsidertwowaysofapproximatingfunctionsin.Intheclassiclinearscheme,wefixa“finestscale”andmea-suretheresumécoefficients

where,withasmoothfunctionintegratingto.

Thinkoftheseaspointsamplesatscaleafterapplyinganantialiasingfilter.Wereconstructbygivinganapproximationerror

withdependingonlyonthechosenwavelet.Thereare

coefficientsassociatedwiththeunitinterval,andsotheapproximationerrorobeys

Inthecompressedsensingscheme,weneedalsowavelets

whereisanoscillatingfunctionwith

meanzero.Wepickacoarsestscale

.Wemeasuretheresumécoefficients—thereareofthese—andthenlet

denoteanenumerationofthedetailwaveletcoeffi-cients

.Thedimensionofis.Thenormsatisfies

Thisestablishestheconstraintonnormneededforourtheory.

Wetake

andapplyanear-optimalinforma-tionoperatorforthisand(describedinmoredetaillater).Weapplythenear-optimalalgorithmofminimization,gettingtheerrorestimate

withindependentof.Theoverallreconstruction

haserror

againwithindependentof.Thisisofthesame

orderofmagnitudeastheerroroflinearsampling.

1299

Thecompressedsensingschemetakesatotalof

samplesofresumécoefficientsand

samplesassoci-atedwithdetailcoefficients,foratotal

piecesofinformation.Itachieveserrorcomparabletoclassicalsampling

basedon

samples.Thus,itneedsdramaticallyfewersam-plesforcomparableaccuracy:roughlyspeaking,onlythecuberootofthenumberofsamplesoflinearsampling.

Toachievethisdramaticreductioninsampling,weneedaninformationoperatorbasedonsomesatisfyingCS1–CS3.Theunderlyingmeasurementkernelswillbeoftheform

(VI.1)

wherethecollection

issimplyanenumerationofthe

wavelets

,withand.

B.ImagesofBoundedVariation

WeconsidernowthemodelwithimagesofBoundedVaria-tionfromtheIntroduction.Let

denotetheclassoffunc-tions

withdomain,havingtotalvariationatmost[38],andboundedinabsolutevalueby

aswell.IntheIntroduction,itwasmentionedthatthewaveletco-efficientsatlevelobey

wheredependsonlyonthewaveletused.Itisalsotruethat

.Weagainconsidertwowaysofapproximatingfunctionsin.Theclassiclinearschemeusesa2-Dversionoftheschemewe

havealreadydiscussed.Weagainfixa“finestscale”

andmeasuretheresumécoefficients

wherenowisapairofintegers,.indexing

position.WeusetheHaarscalingfunction

Wereconstructby

givinganapproxima-

tionerror

Therearecoefficientsassociatedwiththeunitsquare,andsotheapproximationerrorobeys

Inthecompressedsensingscheme,weneedalsoHaar

wavelets

whereisanoscillatingfunctionwithmeanzerowhichiseitherhorizontallyoriented

,verticallyoriented,ordiagonallyoriented.Wepicka“coarsestscale”,andmeasure

theresumécoefficients

—thereareofthese.Thenletbetheconcatenationofthedetailwaveletcoeffi-cients

.Thedimensionofis

.ThenormobeysThisestablishestheconstraintonnormneededforapplying

ourtheory.Wetake

andapplyanear-op-timalinformationoperatorforthisand.Weapplythenear-

1300optimalalgorithmofminimizationtotheresultinginforma-tion,gettingtheerrorestimate

withindependentof.Theoverallreconstruction

haserror

againwithindependentof.Thisisofthesame

orderofmagnitudeastheerroroflinearsampling.

Thecompressedsensingschemetakesatotalof

samplesofresumécoefficientsand

samplesassoci-atedwithdetailcoefficients,foratotalpiecesofmeasuredinformation.Itachieveserrorcomparabletoclas-sicalsamplingwith

samples.Thus,justaswehaveseenintheBumpAlgebracase,weneeddramaticallyfewersamplesforcomparableaccuracy:roughlyspeaking,onlythesquarerootofthenumberofsamplesoflinearsampling.C.Piecewise

ImagesWith

Edges

Wenowconsideranexamplewhere

,andwecanapplytheextensionstotightframesandtoweak-mentionedearlier.Againintheimageprocessingsetting,weusethe-modeldiscussedinCandèsandDonoho[39],[40].Considerthecol-lection

ofpiecewisesmooth,withvalues,firstandsecondpartialderivativesboundedby,away

fromanexceptionalsetwhichisaunionof

curveshavingfirstandsecondderivatives

inanappropriateparametriza-tion;thecurveshavetotallength.Morecolorfully,suchimagesarecartoons—patchesofuniformsmoothbehaviorseparatedbypiecewise-smoothcurvilinearboundaries.Theymightbereasonablemodelsforcertainkindsoftechnicalimagery—e.g.,inradiology.

Thecurveletstightframe[40]isacollectionofsmoothframeelementsofferingaParsevalrelation

andreconstructionformula

Theframeelementshaveamultiscaleorganization,andframe

coefficients

groupedbyscaleobeytheweakconstraintcompare[40].Forsuchobjects,classicallinearsamplingat

scalebysmooth2-Dscalingfunctionsgives

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.52,NO.4,APRIL2006

Thisisnobetterthantheperformanceoflinearsamplingfor

theBoundedVariationcase,despitethepiecewise

characterof;thepossiblediscontinuitiesinareresponsiblefortheinabilityoflinearsamplingtoimproveitsperformanceover

comparedtoBoundedVariation.

Inthecompressedsensingscheme,wepickacoarsestscale

.Wemeasuretheresumécoefficientsina

smoothwaveletexpansion—thereare

ofthese—andthenletdenoteaconcatentationofthefinerscale

curveletcoefficients

.Thedimensionofis,withduetoovercompletenessof

curvelets.Theweak

“norm”obeyswithdependingonand.Thisestablishestheconstraintonweaknormneededforourtheory.Wetake

andapplyanear-optimalinformationoperatorforthisand.Weapplythenear-optimalalgorithmofminimizationtotheresultinginformation,gettingtheerrorestimate

withabsolute.Theoverallreconstruction

haserror

againwithindependentof.Thisisofthesameorderofmagnitudeastheerroroflinearsampling.

Thecompressedsensingschemetakesatotalof

samplesofresumécoefficientsand

samplesassoci-atedwithdetailcoefficients,foratotalpiecesofinformation.Itachieveserrorcomparabletoclassicalsampling

basedon

samples.Thus,evenmoresothanintheBumpAl-gebracase,weneeddramaticallyfewersamplesforcomparableaccuracy:roughlyspeaking,onlythefourthrootofthenumberofsamplesoflinearsampling.

VII.NEARLYALLMATRICESARECSMATRICESWemayreformulateTheorem6asfollows.

Theorem10:Let,beasequenceofproblemsizeswith

,,forand.Letbeamatrixwithcolumnsdrawnindependentlyanduniformlyatrandomfrom.Thenforsomeand

,conditionsCS1–CS3holdforwithoverwhelmingprobabilityforalllarge.

DONOHO:COMPRESSEDSENSINGIndeed,notethattheprobabilitymeasureoninducedby

samplingcolumnsi.i.d.uniformon

isexactlythenaturaluniformmeasureon.Hence,Theorem6followsimmedi-atelyfromTheorem10.

IneffectmatricessatisfyingtheCSconditionsaresoubiq-uitousthatitisreasonabletogeneratethembysamplingatrandomfromauniformprobabilitydistribution.

TheproofofTheorem10isconductedoverSectionsVII-A–C;itproceedsbystudyingevents

,,whereCS1Holds,etc.Itwillbeshownthatforparametersand

thendefiningand,wehave

Since,whenoccurs,ourrandomdrawhasproducedama-trixobeyingCS1–CS3withparameters

and,thisprovesTheorem10.Theproofactuallyshowsthatforsome

,,;theconvergenceisexponen-tiallyfast.

A.ControlofMinimalEigenvalue

Thefollowinglemmaallowsustochoosepositiveconstants

andsothatconditionCS1holdswithoverwhelmingprobability.

Lemma7.1:Considersequencesofwith

.Definetheevent

Then,foreach,forsufficientlysmall

Theproofinvolvesthreeideas.ThefirstideaisthattheeventofinterestforLemma7.1isrepresentableintermsofeventsindexedbyindividualsubsets

Ourplanistoboundtheprobabilityofoccurrenceofevery.

Thesecondideaisthatforaspecificsubset,wegetlargede-viationsboundsontheminimumeigenvalue;thiscanbestatedasfollows.

Lemma7.2:For

,letdenotetheeventthattheminimumeigenvalueexceeds.

Thenthereis

sothatforsufficientlysmallandall

uniformlyin.

Thiswasderivedin[11]andin[35],usingtheconcentrationofmeasurepropertyofsingularvaluesofrandommatrices,e.g.,seeSzarek’swork[41],[42].

1301

Thethirdandfinalideaisthatboundsforindividualsubsetscancontrolsimultaneousbehavioroverall.Thisisexpressedasfollows.

Lemma7.3:Supposewehaveevents

allobeying,for

somefixed

andforeach

with

.Pick

with

and

with

.Thenforall

sufficientlylarge

forsome

with

Ourmaingoalofthissubsection,Lemma7.1,nowfollowsbycombiningthesethreeideas.

ItremainsonlytoproveLemma7.3.Let

with

Wenotethat,byBoole’sinequality

thelastinequalityfollowingbecauseeachmemberisof

cardinality

,since,assoonas.Also,ofcourse

soweget

.Takingasgiven,wegetthe

desiredconclusion.

B.SphericalSectionsProperty

WenowshowthatconditionCS2canbemadeoverwhelm-inglylikelyforlargebychoiceofandsufficientlysmallbutstillpositive.Ourapproachderivesfrom[11],whichappliedanimportantresultfromBanachspacetheory,thealmostspher-icalsectionsphenomenon.ThissaysthatslicingtheunitballinaBanachspacebyintersectionwithanappropriatefinite-dimen-sionallinearsubspacewillresultinaslicethatiseffectivelyspherical[43],[44].Wedevelopaquantitativerefinementof

thisprincipleforthe

normin,showingthat,withover-whelmingprobability,everyoperator

foraffordsasphericalsectionoftheball.ThebasicargumentweuseoriginatesfromworkofMilman,Kashin,andothers[44],[10],[45];werefineanargumentinPisier[19]and,asin[11],drawinferencesthatmaybenovel.Weconcludethatnotonlydoalmost-sphericalsectionsexist,buttheyaresoubiquitousthat

every

withwillgeneratethem.Definition7.1:Let

.Wesaythatoffersan-isom-

etrybetweenand

if

(VII.1)

1302ThefollowinglemmashowsthatconditionCS2isagenericpropertyofmatrices.

Lemma7.4:Considertheeventthateverywithoffersan-isometrybetweenand.Foreach,thereissothat

Toprovethis,wefirstneedalemmaaboutindividualsubsetsprovenin[11].Lemma7.5:Fix.Choose

sothat

(VII.2)

and

(VII.3)

Choose

sothat

andletdenotethedifferencebetweenthetwosides.For

asubsetin

,letdenotetheeventthatfurnishesan-isometryto.Thenas

NownotethattheeventofinterestforLemma7.4istofinish,applytheindividualLemma7.5togetherwiththecom-biningprincipleinLemma7.3.C.QuotientNormInequalities

Wenowshowthat,for,forsufficientlysmall,nearlyalllargebymatriceshavepropertyCS3.Ourargumentborrowsheavilyfrom[11]whichthereadermayfindhelpful.Weheremakenoattempttoprovideintuitionortocom-parewithcloselyrelatednotionsinthelocaltheoryofBanachspaces(e.g.,Milman’sQuotientofaSubspaceTheorem[19]).

Letbeanycollectionofindicesin

;isalinearsubspaceof,andonthissubspaceasubsetofpossiblesignpatternscanberealized,i.e.,sequencesof’sgeneratedby

CS3willfollowifwecanshowthatforevery,

someapproximationtosatisfiesfor.

Lemma7.6:UniformSign-PatternEmbedding.Fix

.

Thenfor

,set(VII.4)

Forsufficientlysmall

,thereisaneventwith,as.Onthisevent,foreachsubsetwith,foreachsignpatternin,there

isavector

with(VII.5)

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.52,NO.4,APRIL2006

and

(VII.6)

Inwords,asmallmultipleofanysignpatternalmost

livesinthedualball

.Beforeprovingthisresult,weindicatehowitgivestheprop-ertyCS3;namely,that

,andimply

(VII.7)

Considertheconvexoptimizationproblem

subjectto

(VII.8)

Thiscanbewrittenasalinearprogram,bythesamesortofcon-structionasgivenfor(IV.1).Bythedualitytheoremforlinearprogramming,thevalueoftheprimalprogramisatleastthevalueofthedual

subjectto

Lemma7.6givesusasupplyofdual-feasiblevectorsandhence

alowerboundonthedualprogram.Take

;wecanfindwhichisdual-feasibleandobeys

pickingappropriatelyandtakingintoaccountthesphericalsectionstheorem,forsufficientlylarge,wehave

;(VII.7)followswith.

1)ProofofUniformSign-PatternEmbedding:TheproofofLemma7.6followscloselyasimilarresultin[11]thatconsid-eredthecase

.Ourideahereistoadapttheargumentforthe

casetothecase,withchangesreflectingthedifferentchoiceof,,andthe

sparsitybound

.Weleaveoutlargepartsofthear-gument,astheyareidenticaltothecorrespondingpartsin[11].Thebulkofoureffortgoestoproducethefollowinglemma,whichdemonstratesapproximateembeddingofasinglesignpatterninthedualball.

Lemma7.7:IndividualSign-PatternEmbedding.Let

,let,with,,,asinthestatementof

Lemma7.6.Let

.Givenacollection,thereisaniterativealgorithm,describedbelow,producingavectorasoutputwhichobeys

(VII.9)

Letbei.i.d.uniformon;thereisaneventdescribedbelow,havingprobabilitycontrolledby

(VII.10)

for

whichcanbeexplicitlygivenintermsofand.Onthisevent

(VII.11)

Lemma7.7willbeproveninasectionofitsown.WenowshowthatitimpliesLemma7.6.

DONOHO:COMPRESSEDSENSINGWerecallastandardimplicationofso-calledVapnik–Cervonenkistheory[46]Noticethatif,then

whilealso

Hence,thetotalnumberofsignpatternsgeneratedbyoperators

obeys

Now

furnishedbyLemma7.7ispositive,sopick

with.Define

wheredenotestheinstanceoftheevent(calledinthestatementofLemma7.7)generatedbyaspecific,combi-nation.Ontheevent

,everysignpatternassociatedwithanyobeyingisalmostdualfeasible.Now

whichtendstozeroexponentiallyrapidly.D.ProofofIndividualSign-PatternEmbedding

1)AnEmbeddingAlgorithm:Thecompanionpaper[11]in-troducedanalgorithmtocreateadualfeasiblepointstartingfromanearbyalmost-feasiblepoint.Itworkedasfollows.

Letbethecollectionofindices

withandthenset

where

denotestheleast-squaresprojector

.Ineffect,identifytheindiceswhere

exceedshalftheforbiddenlevel,and“kill”thoseindices.

Continuethisprocess,producing,,etc.,withstage-de-pendentthresholds

successivelycloserto.Setand,putting,

1303

Ifisempty,thentheprocessterminates,andset

.

Terminationmustoccuratstage

.AtterminationHence,isdefinitelydualfeasible.Theonlyquestionishow

closeto

itis.2)AnalysisFramework:Alsoin[11]boundsweredevel-opedfortwokeydescriptorsofthealgorithmtrajectoryand

Weadapttheargumentsdeployedthere.Wedefinebounds

andforand,oftheform

hereand

,wherewill

bedefinedlater.Wedefinesubevents

Nowdefine

thiseventimplies,because

Wewillshowthat,for

choseninconjunctionwith

(VII.12)

Thisimplies

andthelemmafollows.

3)LargeDeviations:Definetheevents

sothat

Put

andnotethatthisdependsquiteweaklyon.Recallthatthe

event

isdefinedintermsofand.Ontheevent,.Lemma7.1implicitlydefinedaquan-tity

lowerboundingtheminimumeigenvalueof1304everywhere

.Picksothat

.Pick

sothat

Withthischoiceof,whentheeventoccurs,

Also,on,(say)for.

In[11],ananalysisframeworkwasdevelopedinwhicha

family

ofrandomvariablesi.i.d.wasintroduced,anditwasshownthat

and

Thatpaperalsostatedtwosimplelargedeviationsbounds.Lemma7.8:Let

bei.i.d.

,

,

and

Applyingthis,wenotethattheevent

statedintermsof

variables,isequivalenttoanevent

statedintermsofstandardrandomvariables,where

and

Wethereforehavefortheinequality

Now

and

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.52,NO.4,APRIL2006

Since,thetermofmostconcerninis

at

;theothertermsarealwaysbetter.Alsoinfactdoesnotdependon.Focusingnowon

,wemaywriteRecallingthatandputting

weget

for,and

Asimilaranalysisholdsforthe’s.

VIII.CONCLUSION

A.Summary

Wehavedescribedanabstractframeworkforcompressed

sensingofobjectswhichcanberepresentedasvectors

.Weassumetheobject

ofinterestisaprioricompressiblesothatforaknownbasisorframeand.

Startingfromanbymatrixwith

satisfyingcondi-tionsCS1–CS3,andwiththematrixofanorthonormalbasis

ortightframeunderlying

,wedefinetheinformationoperator.Startingfromthe-tupleofmeasured

information

,wereconstructanapproximationtobysolving

subjectto

Theproposedreconstructionruleusesconvexoptimizationandiscomputationallytractable.Also,theneededmatricessatis-fyingCS1–CS3canbeconstructedbyrandomsamplingfromauniformdistributiononthecolumnsof.

Wegiveerrorboundsshowingthatdespitetheapparentun-dersampling

,goodaccuracyreconstructionispossibleforcompressibleobjects,andweexplainthenear-optimalityoftheseboundsusingideasfromOptimalRecoveryandInforma-tion-BasedComplexity.Weevenshowthattheresultsarestableundersmallmeasurementerrorsinthedata(

small).Potentialapplicationsaresketchedrelatedtoimagingandspectroscopy.B.AlternativeFormulation

WeremarkthattheCS1–CS3conditionsarenottheonlywaytoobtainourresults.OurproofofTheorem9reallyshowsthefollowing.

Theorem11:Supposethatanmatrixobeysthe

followingconditions,withconstants

,

and

.

DONOHO:COMPRESSEDSENSINGA1:

Themaximalconcentration(definedin

SectionIV-B)obeys

(VIII.1)

A2:Thewidth(definedinSectionII)obeys

(VIII.2)

Let.Forsomeandall,thesolutionofobeystheestimate

Inshort,adifferentapproachmightexhibitoperatorswithgoodwidthsoverballsonly,andlowconcentrationon“thin”sets.AnotherwaytoseethattheconditionsCS1–CS3cannodoubtbeapproacheddifferentlyistocomparetheresultsin[11],[35];thesecondpaperprovesresultswhichpartiallyoverlapthoseinthefirst,byusingadifferenttechnique.C.ThePartialFourierEnsemble

Webrieflydiscusstworecentarticleswhichdonotfitinthe-widthstraditionfollowedhere,andsowerenoteasytociteearlierwithdueprominence.

First,andclosesttoourviewpoint,isthebreakthroughpaperofCandès,Romberg,andTao[13].Thiswasdiscussedin

SectionIV-B;theresultof[13]showedthat

minimizationcanbeusedtoexactlyrecoversparsesequencesfromtheFouriertransformatrandomlychosenfrequencies,whenever

thesequencehasfewerthan

nonzeros,forsome.SecondisthearticleofGilbertetal.[12],which

showedthatadifferentnonlinearreconstructionalgorithmcan

beusedtorecoverapproximationstoavectorin

whichisnearlyasgoodasthebest-termapproximationin

norm,usingabout

randombutnonuniformsamplesinthefrequencydomain;here

is(itseems)anupperboundonthenormof.

ThesepapersbothpointtothepartialFourierensemble,i.e.,

thecollectionof

matricesmadebysamplingrowsoutofthe

Fouriermatrix,asconcreteexamplesofworkingwithintheCSframework;thatis,generatingnear-optimalsub-spacesforGel’fand-widths,andallowingminimizationto

reconstructfromsuchinformationforall

.Now[13](ineffect)provesthatif

,theninthepartialFourierensemblewithuniformmeasure,themaximalconcentrationconditionA1(VIII.1)holdswithoverwhelming

probabilityforlarge(forappropriateconstants

,).Ontheotherhand,theresultsin[12]seemtoshowthatconditionA2(VIII.2)holdsinthepartialFourierensemblewithoverwhelmingprobabilityforlarge,whenitissampledwithacertainnonuniformprobabilitymeasure.Althoughthetwopa-pers[13],[12]refertodifferentrandomensemblesofpartialFouriermatrices,bothreinforcetheideathatinterestingrela-tivelyconcretefamiliesofoperatorscanbedevelopedforcom-pressedsensingapplications.Infact,CandèshasinformedusofsomerecentresultsheobtainedwithTao[47]indicatingthat,modulopolylogfactors,A2holdsfortheuniformlysampledpartialFourierensemble.Thisseemsaverysignificantadvance.

1305

NoteAddedinProof

Inthemonthssincethepaperwaswritten,severalgroupshaveconductednumericalexperimentsonsyntheticandrealdataforthemethoddescribedhereandrelatedmethods.Theyhaveex-ploredapplicabilitytoimportantsensorproblems,andstudiedapplicationsissuessuchasstabilityinthepresenceofnoise.ThereadermaywishtoconsulttheforthcomingSpecialIssueonSparseRepresentationoftheEURASIPjournalAppliedSignalProcessing,orlookforpaperspresentedataspecialsessioninICASSP2005,ortheworkshoponsparserepresentationheldinMay2005attheUniversityofMarylandCenterforScien-tificComputingandAppliedMathematics,ortheworkshopinNovember2005atSpars05,UniversitédeRennes.

ArefereehaspointedoutthatCompressedSensingisinsomerespectssimilartoproblemsarisingindatastreamprocessing,whereonewantstolearnbasicproperties[e.g.,moments,his-togram]ofadatastreamwithoutstoringthestream.Inshort,onewantstomakerelativelyfewmeasurementswhileinfer-ringrelativelymuchdetail.Thenotionsof“Icebergqueries”inlargedatabasesand“heavyhitters”indatastreamsmayprovidepointsofentryintothatliterature.

ACKNOWLEDGMENT

Inspring2004,EmmanuelCandèstoldthepresentauthorabouthisideasforusingthepartialFourierensemblein“under-sampledimaging”;someofthesewerepublishedin[13];seealsothepresentation[14].Morerecently,Candèsinformedthepresentauthoroftheresultsin[47]referredtoabove.Itisaplea-suretoacknowledgetheinspiringnatureoftheseconversations.TheauthorwouldalsoliketothankAnnaGilbertfortellinghimaboutherwork[12]findingtheB-bestFouriercoefficientsbynonadaptivesampling,andtothankEmmanuelCandèsforconversationsclarifyingGilbert’swork.Thankstotherefereesfornumeroussuggestionswhichhelpedtoclarifytheexpositionandargumentation.AnnaGilbertofferedhelpfulpointerstothedatastreamprocessingliterature.

REFERENCES

[1]D.L.Donoho,M.Vetterli,R.A.DeVore,andI.C.Daubechies,“Data

compressionandharmonicanalysis,”IEEETrans.Inf.Theory,vol.44,no.6,pp.2435–2476,Oct.1998.

[2]Y.Meyer,WaveletsandOperators.Cambridge,U.K.:Cambridge

Univ.Press,1993.

[3]D.L.Donoho,“Unconditionalbasesareoptimalbasesfordatacompres-sionandforstatisticalestimation,”Appl.Comput.HarmonicAnal.,vol.1,pp.100–115,1993.[4],“Sparsecomponentsofimagesandoptimalatomicdecomposi-tion,”ConstructiveApprox.,vol.17,pp.353–382,2001.

[5]A.Pinkus,“n-widthsandoptimalrecoveryinapproximationtheory,”in

Proc.Symp.AppliedMathematics,vol.36,C.deBoor,Ed.,Providence,RI,1986,pp.51–66.

[6]J.F.TraubandH.Woziakowski,AGeneralTheoryofOptimalAlgo-rithms.NewYork:Academic,1980.

[7]D.L.Donoho,“Unconditionalbasesandbit-levelcompression,”Appl.

Comput.HarmonicAnal.,vol.3,pp.388–92,1996.

[8]A.Pinkus,n-WidthsinApproximationTheory.NewYork:Springer-Verlag,1985.

[9]A.Y.GarnaevandE.D.Gluskin,“OnwidthsoftheEuclideanball”(in

English),Sov.Math.–Dokl.,vol.30,pp.200–203,1984.

[10]B.S.Kashin,“Diametersofcertainfinite-dimensionalsetsinclassesof

smoothfunctions,”Izv.Akad.NaukSSSR,Ser.Mat.,vol.41,no.2,pp.334–351,1977.

1306[11]D.L.Donoho,“Formostlargeunderdeterminedsystemsoflinear

equations,theminimal`-normsolutionisalsothesparsestsolution,”Commun.PureAppl.Math.,tobepublished.

[12]A.C.Gilbert,S.Guha,P.Indyk,S.Muthukrishnan,andM.Strauss,

“Near-optimalsparsefourierrepresentationsviasampling,”inProc34thACMSymp.TheoryofComputing,Montréal,QC,Canada,May2002,pp.152–161.

[13]E.J.Candès,J.Romberg,andT.Tao,“Robustuncertaintyprinciples:

Exactsignalreconstructionfromhighlyincompletefrequencyinforma-tion.,”IEEETrans.Inf.Theory,tobepublished.

[14]E.J.Candès,“RobustUncertaintyPrinciplesandSignalRecovery,”

presentedatthe2ndInt.Conf.ComputationalHarmonicAnaysis,Nashville,TN,May2004.

[15]C.A.MicchelliandT.J.Rivlin,“Asurveyofoptimalrecovery,”inOp-timalEstimationinApproximationTheory,C.A.MicchelliandT.J.Rivlin,Eds:Plenum,1977,pp.1–54.

[16]J.PeetreandG.Sparr,“Interpolationofnormedabeliangroups,”Ann.

Math.PureAppl.,ser.4,vol.92,pp.217–262,1972.

[17]J.BerghandJ.Löfström,InterpolationSpaces.AnIntroduc-tion.Berlin,Germany:Springer-Verlag,1976.

[18]B.Carl,“Entropynumberss-numbers,andeigenvalueproblems,”J.

Funct.Anal.,vol.41,pp.290–306,1981.

[19]G.Pisier,TheVolumeofConvexBodiesandBanachSpaceGeom-etry.Cambridge,U.K.:CambridgeUniv.Press,19.

[20]C.Schütt,“Entropynumbersofdiagonaloperatorsbetweensymmetric

Banachspaces,”J.Approx.Theory,vol.40,pp.121–128,1984.

[21]T.Kuhn,“Alowerestimateforentropynumbers,”J.Approx.Theory,

vol.110,pp.120–124,2001.

[22]S.GalandC.Micchelli,“Optimalsequentialandnonsequentialproce-duresforevaluatingafunctional,”Appl.Anal.,vol.10,pp.105–120,1980.

[23]A.A.MelkmanandC.A.Micchelli,“Optimalestimationoflinearoper-atorsfrominaccuratedata,”SIAMJ.Numer.Anal.,vol.16,pp.87–105,1979.

[24]M.A.KonandE.Novak,“Theadaptionproblemforapproximating

linearoperators,”Bull.Amer.Math.Soc.,vol.23,pp.159–165,1990.[25]E.Novak,“Onthepowerofadaption,”J.Complexity,vol.12,pp.

199–237,1996.

[26]S.Chen,D.L.Donoho,andM.A.Saunders,“Atomicdecompositionby

basispursuit,”SIAMJ.SciComp.,vol.20,no.1,pp.33–61,1999.[27]D.L.DonohoandX.Huo,“Uncertaintyprinciplesandidealatomicde-composition,”IEEETrans.Inf.Theory,vol.47,no.7,pp.2845–62,Nov.2001.

[28]M.EladandA.M.Bruckstein,“Ageneralizeduncertaintyprincipleand

sparserepresentationsinpairsofbases,”IEEETrans.Inf.Theory,vol.49,no.9,pp.2558–2567,Sep.2002.

[29]D.L.DonohoandM.Elad,“Optimallysparserepresentationfromover-completedictionariesvia`normminimization,”Proc.Natl.Acad.Sci.USA,vol.100,no.5,pp.2197–2002,Mar.2002.

IEEETRANSACTIONSONINFORMATIONTHEORY,VOL.52,NO.4,APRIL2006

[30]R.GribonvalandM.Nielsen,“Sparserepresentationsinunionsof

bases,”IEEETransInfTheory,vol.49,no.12,pp.3320–3325,Dec.2003.

[31]J.J.Fuchs,“Onsparserepresentationinarbitraryredundantbases,”

IEEETrans.Inf.Theory,vol.50,no.6,pp.1341–1344,Jun.2002.[32]J.A.Tropp,“Greedisgood:Algorithmicresultsforsparseapproxima-tion,”IEEETransInf.Theory,vol.50,no.10,pp.2231–2242,Oct.2004.[33],“Justrelax:Convexprogrammingmethodsforidentifyingsparse

signalsinnoise,”IEEETransInf.Theory,vol.52,no.3,pp.1030–1051,Mar.2006.

[34]D.L.Donoho,M.Elad,andV.Temlyakov,“Stablerecoveryofsparse

overcompleterepresentationsinthepresenceofnoise,”IEEETrans.Inf.Theory,vol.52,no.1,pp.6–18,Jan.2006.

[35]D.L.Donoho,“Formostunderdeterminedsystemsoflinearequations,

theminimal`-normnear-solutionapproximatesthesparsestnear-so-lution,”Commun.PureAppl.Math.,tobepublished.

[36]I.C.Daubechies,TenLecturesonWavelets.Philadelphia,PA:SIAM,

1992.

[37]S.Mallat,AWaveletTourofSignalProcessing.SanDiego,CA:Aca-demic,1998.

[38]A.Cohen,R.DeVore,P.Petrushev,andH.Xu,“Nonlinearapproxima-tionandthespaceBV(R),”Amer.J.Math.,vol.121,pp.587–628,1999.

[39]E.J.CandèsandD.L.Donoho,“Curvelets—Asurprisinglyeffective

nonadaptiverepresentationforobjectswithedges,”inCurvesandSur-faces,C.Rabut,A.Cohen,andL.L.Schumaker,Eds.Nashville,TN:VanderbiltUniv.Press,2000.

[40]

,“Newtightframesofcurveletsandoptimalrepresentationsofob-jectswithpiecewiseCsingularities,”Comm.PureAppl.Math.,vol.LVII,pp.219–266,2004.

[41]S.J.Szarek,“Spaceswithlargedistancesto`andrandommatrices,”

Amer.J.Math.,vol.112,pp.819–842,1990.[42],“Conditionnumbersofrandommatrices,”J.Complexity,vol.7,

pp.131–149,1991.

[43]A.Dvoretsky,“Someresultsonconvexbodiesandbanachspaces,”in

Proc.Symp.LinearSpaces,Jerusalem,Israel,1961,pp.123–160.

[44]T.Figiel,J.Lindenstrauss,andV.D.Milman,“Thedimensionofalmost-sphericalsectionsofconvexbodies,”ActaMath.,vol.139,pp.53–94,1977.

[45]V.D.MilmanandG.Schechtman,AsymptoticTheoryofFinite-Dimen-sionalNormedSpaces(LeectureNotesinMathematics).Berlin,Ger-many:Springer-Verlag,1986,vol.1200.

[46]D.Pollard,EmpiricalProcesses:TheoryandApplications.Hayward,

CA:Inst.Math.Statist.,vol.2,NSF-CBMSRegionalConferenceSeriesinProbabilityandStatistics.

[47]E.J.CandèsandT.Tao,“Near-optimalsignalrecoveryfromrandom

projections:Universalencodingstrategies,”AppliedandComputationalMathematics,Calif.Inst.Technol.,Tech.Rep.,2004.

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- baijiahaobaidu.com 版权所有 湘ICP备2023023988号-9

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务