Python绘制3D图形
3D图形在数据分析、数据建模、图形和图像处理等领域中都有着⼴泛的应⽤,下⾯将给⼤家介绍⼀下如何使⽤python进⾏3D图形的绘制,包括3D散点、3D表⾯、3D轮廓、3D直线(曲线)以及3D⽂字等的绘制。准备⼯作:
python中绘制3D图形,依旧使⽤常⽤的绘图模块matplotlib,但需要安装mpl_toolkits⼯具包,安装⽅法如下:windows命令⾏进⼊到python安装⽬录下的Scripts⽂件夹下,执⾏: pip install --upgrade matplotlib即可;linux环境下直接执⾏该命令。安装好这个模块后,即可调⽤mpl_tookits下的mplot3d类进⾏3D图形的绘制。下⾯以实例进⾏说明。1、3D表⾯形状的绘制
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Make data
u = np.linspace(0, 2 * np.pi, 100) v = np.linspace(0, np.pi, 100)
x = 10 * np.outer(np.cos(u), np.sin(v)) y = 10 * np.outer(np.sin(u), np.sin(v))
z = 10 * np.outer(np.ones(np.size(u)), np.cos(v))
# Plot the surface
ax.plot_surface(x, y, z, color='b')
plt.show()
球表⾯,结果如下:
2、3D直线(曲线)的绘制
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D import numpy as np
import matplotlib.pyplot as plt
mpl.rcParams['legend.fontsize'] = 10
fig = plt.figure()
ax = fig.gca(projection='3d')
theta = np.linspace(-4 * np.pi, 4 * np.pi, 100) z = np.linspace(-2, 2, 100) r = z**2 + 1
x = r * np.sin(theta) y = r * np.cos(theta)
ax.plot(x, y, z, label='parametric curve') ax.legend()
plt.show()
这段代码⽤于绘制⼀个螺旋状3D曲线,结果如下:
3、绘制3D轮廓
from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt from matplotlib import cm
fig = plt.figure()
ax = fig.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
cset = ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm) cset = ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm) cset = ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
ax.set_xlabel('X') ax.set_xlim(-40, 40) ax.set_ylabel('Y') ax.set_ylim(-40, 40) ax.set_zlabel('Z')
ax.set_zlim(-100, 100)
plt.show()
绘制结果如下:
4、绘制3D直⽅图
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d') x, y = np.random.rand(2, 100) * 4
hist, xedges, yedges = np.histogram2d(x, y, bins=4, range=[[0, 4], [0, 4]])
# Construct arrays for the anchor positions of the 16 bars.
# Note: np.meshgrid gives arrays in (ny, nx) so we use 'F' to flatten xpos,
# ypos in column-major order. For numpy >= 1.7, we could instead call meshgrid # with indexing='ij'.
xpos, ypos = np.meshgrid(xedges[:-1] + 0.25, yedges[:-1] + 0.25) xpos = xpos.flatten('F') ypos = ypos.flatten('F') zpos = np.zeros_like(xpos)
# Construct arrays with the dimensions for the 16 bars. dx = 0.5 * np.ones_like(zpos) dy = dx.copy() dz = hist.flatten()
ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color='b', zsort='average')
plt.show()
绘制结果如下:
5、绘制3D⽹状线
from mpl_toolkits.mplot3d import axes3d import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Grab some test data.
X, Y, Z = axes3d.get_test_data(0.05)
# Plot a basic wireframe.
ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
plt.show()
绘制结果如下:
6、绘制3D三⾓⾯⽚图
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np
n_radii = 8 n_angles = 36
# Make radii and angles spaces (radius r=0 omitted to eliminate duplication). radii = np.linspace(0.125, 1.0, n_radii)
angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
# Repeat all angles for each radius.
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
# Convert polar (radii, angles) coords to cartesian (x, y) coords.
# (0, 0) is manually added at this stage, so there will be no duplicate # points in the (x, y) plane.
x = np.append(0, (radii*np.cos(angles)).flatten()) y = np.append(0, (radii*np.sin(angles)).flatten())
# Compute z to make the pringle surface. z = np.sin(-x*y)
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_trisurf(x, y, z, linewidth=0.2, antialiased=True)
plt.show(
绘制结果如下:
7、绘制3D散点图
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np
def randrange(n, vmin, vmax): '''''
Helper function to make an array of random numbers having shape (n, ) with each number distributed Uniform(vmin, vmax). '''
return (vmax - vmin)*np.random.rand(n) + vmin
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
n = 100
# For each set of style and range settings, plot n random points in the box # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh]. for c, m, zlow, zhigh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]: xs = randrange(n, 23, 32) ys = randrange(n, 0, 100)
zs = randrange(n, zlow, zhigh)
ax.scatter(xs, ys, zs, c=c, marker=m)
ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label')
plt.show()
绘制结果如下:
8、绘制3D⽂字
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.gca(projection='3d')
# Demo 1: zdir
zdirs = (None, 'x', 'y', 'z', (1, 1, 0), (1, 1, 1)) xs = (1, 4, 4, 9, 4, 1) ys = (2, 5, 8, 10, 1, 2) zs = (10, 3, 8, 9, 1, 8)
for zdir, x, y, z in zip(zdirs, xs, ys, zs):
label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir) ax.text(x, y, z, label, zdir)
# Demo 2: color
ax.text(9, 0, 0, \"red\
# Demo 3: text2D
# Placement 0, 0 would be the bottom left, 1, 1 would be the top right. ax.text2D(0.05, 0.95, \"2D Text\
# Tweaking display region and labels ax.set_xlim(0, 10) ax.set_ylim(0, 10) ax.set_zlim(0, 10) ax.set_xlabel('X axis') ax.set_ylabel('Y axis') ax.set_zlabel('Z axis')
plt.show(
绘制结果如下:
9、3D条状图
from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d') for c, z in zip(['r', 'g', 'b', 'y'], [30, 20, 10, 0]): xs = np.arange(20)
ys = np.random.rand(20)
# You can provide either a single color or an array. To demonstrate this, # the first bar of each set will be colored cyan. cs = [c] * len(xs) cs[0] = 'c'
ax.bar(xs, ys, zs=z, zdir='y', color=cs, alpha=0.8)
ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z')
plt.show()
绘制结果如下:
以上所述是⼩编给⼤家介绍的python绘制3D图形,希望对⼤家有所帮助,如果⼤家有任何疑问请给我留⾔,⼩编会及时回复⼤家的。在此也⾮常感谢⼤家对⽹站的⽀持