列一元二次方程解应用题练习 有关数字的计算
1、 两个连续偶数的乘积为48,求这两个数? 类似题型:
①两个连续奇数的乘积为63,求这两个数? ②两个连续整数的平方和为13,求这两个数?
12.有一个两位数,它两个数字之和为6,这两个数字的积等于这个两位数的,
3求这个两位数。
二、 有关面积的计算
1、 学校生物小组有一块长38米,宽22米的矩形试验田,为了管理方便准备沿平行两边的方向纵、横各开辟一条等宽的小道,要使种植面积为665平方米,小道的宽应为多少?
2、 用一块矩形的铁片,在它的四个角上各剪去一个边长相等的小正方形,然后四边折起来,恰好成为一个无盖的盒子,铁片的长为40厘米,宽为20厘米,若要求盒子的底面积为576平方厘米,求剪去的小正方形的边长为多少?
3、 利用墙的一边,再用长13米的铁丝网围成三边,围成一个面积为20平方米的长方形,求这个长方形的长和宽? 三、 有关百分率的计算
1、 某机械厂生产一个产品,2004年的产量为2000件,经技术改造后,2006年的产量达到2420件,平均每年增长的百分率是多少?
2、 某药品经过两次降价,从原来每箱60元降为每箱48.6元,平均每次降价率为多少?
3、 某厂一月份生产产品100台,计划二、三月份共生产375台,若二、三月平均每月增长率相同,求每月的增长率为多少?
某商场今年一月份的销售额为100万元,二月份由于经营不善,销售额下降了36%,以后改进管理到四月份销售额猛增到144万元,求三四月份平均每月增长的百分率? 增长率问题: 1、某房屋开发公司经过几年的不懈努力,开发建设住宅面积由2000年4万平方米,到2002年的7万平方米。设这两年该房屋开发公司开发建设住宅面积的年平均增长率为x ,则可列方程为________________;
2、(2003北京西城)宏欣机械厂生产某种型号的鼓风机,一月至六月份的产量如下:
月 份 一 二 三 四 五 六 产量(台) 50 51 48 50 52 49 (1) 求上半年鼓风机月产量和平均数、中位数; (2) 由于改进了生产技术,计划八月份生产鼓风机72台,与上半年月产量平均数相比,七、八月鼓风机生产量平均每月的增长率是多少?
3、美化城市,改善人们的居住环境已成为城市建设的一项重要内容.某市城区近几年来,通过拆迁旧房,植草,栽树,修建公园
等措施,使城区绿地面积不断增加(如图所示)
(1)根据图中所提供的信息,回答下列问题:2001年底的绿地面积为 公顷,比2000年底增加了 公顷;在1999年,2000年,2001年这三年中, 绿地面积增加最多的是 年; (2)为满足城市发展的需要,计划到2003年底使城区绿地总面积达到72.6公顷,试求今明两年绿地面积的年平均增长率. 行程问题:
1、)甲、乙两艘旅游客轮同时从省某港出发来厦门。甲沿直航线航行180海里到达厦门;乙沿原来航线绕道后来厦门,共航行了720海里,结果乙比甲晚20小时到达厦门。已知乙速比甲速每小时快6海里,求甲客轮的速度(其中两客轮速度都大于16海里/小时)?
2、为了开阔学生视野,某校组织学生从学校出发,步行6千米到科技展览馆参观。返回时比去时每小题少走1千米,结果返回时比去时多用了半小时。求学生返回时步行的速度 3、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速. 经济问题:
1、(某商店以2400元购进某种盒装茶叶,第一个月每盒按进价增加20%作为售价,售出50盒,第二个月每盒以低于进价5元作为售价,售完余下的茶叶.在整个买卖过程中盈利350元,求每盒茶叶的进价. 2、黄冈百货商店服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六·一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天销售这种童装上盈利1200元,那么每件童装因应降价多少元?
3、某书店老板去批发市场购买某种图书,第一次购用100元,按该书定价2.8元现售,并快售完.由于该书畅销,第二次购书时,每本的批发价已比第一次高
40.5元,用去了150元,所购数量比第一次多10本.当这批书售出时,出现滞
5销,便以定价的5折售完剩余的图书,试问该老板第二次售书是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?,若赚钱,赚多少? 工程问题:
1、为加强防汛工作,市工程队准备对苏州河一段长为2240米的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20米,因而完成此段加固工程所需天数将比原计划缩短2天.为进一步缩短该段加固工程的时间,如果要求每天加固224米,那么在现在计划的基础上,每天加固的长度还要再增加多少米?
2、某公司需在一个月(31天)内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.
(1)求甲、乙两工程队单独完成此项工程所需的天数.
(2)如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司
每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程出.B请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少?
3、一路段的道路维修工程准备对外招标,现有甲、乙两个工程队竞标,竞标资料显示:若两队合作6天可完成,共需工程费10200元;若甲单独完成,甲队比乙队少用5天,但甲队的工程费每天比乙队多300元. (1)甲单独完成需要几天?
(2)工程指挥部决定从两个队中䅀一个队单独完成此工程,若从节省资金的角度考虑,应选哪个工程队?为什么? 四、 有关练习
1、 小明对小华说:“你能用22厘米的铁丝折成一个面积为30平方厘米的矩形吗?若能,请求出矩形的长与宽?
2、 为了绿化家乡,沙溪镇计划05至07年三年植树1324棵,该镇05年植树400棵,则该镇这三年平均每年植树增长的百分率为多少?
3、将一块长18米,宽15米的矩形荒地修建成一个花园(阴影部分)所占的面积为原来荒地面积的三分之二.(精确到0.1m)
(1)设计方案1(如图1)花园中修两条互相垂直且宽度相等的小路. (2)设计方案2(如图2)花园中每个角的扇形都相同. 以上两种方案是否都能符合条件?若能,请计算出图2中的小路的宽和图3中扇
B形的半径;若不能符合条件,请说明理由.
Qwww.czsx.com.cn
图2 ACP 图1
图3 www.czsx.com.cn
4,如图3所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.
(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米? (2)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积等于△ABC的面积的一半.若存在,求出运动的时间;若不存在,说明理由.
5.今年我国多个省市遭受严重干旱,受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表: 1 2 3 4 周数x 2 价格y(元/千2.2 2.4 2.6 克) 进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且y与周数x的变化情况
1
满足二次函数y=- 20 x2+bx+c.
(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x 的函数关系式,并求出5月份y与x的函数关系式;
(2)若4月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系为m 1
= 4 x+1.2,5月份此种蔬菜的进价m(元/千克)与周数x所满足的函数关系
1为m=x+2.试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润
5最大?且最大利润分别是多少?
(3)若5月份的第2周共销售100吨此种蔬菜.从5月份的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少a %,为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨0.8 a %.若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a的整数值.
(参考数据:372=1369,382=1444,392=1521,402=1600,412=1681) 6、某企业为重庆计算机产业基地提供电脑配件,受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表: 月份x 价格y1(元/件) 1 560 2 580 3 600 4 620 5 0 6 660 7 680 8 700 9 720 随着国家措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势: (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式; (2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润; (3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值. (参考数据:992=9901,982=9604,972=9409,962=9216,952=9025)