第四章 环与域
§1 环的定义
一、主要容
1.环与子环的定义和例子。在例子中,持别重要的是效域上的多项式环、n阶全阵环和线性变换环,以及集M的幂集环.
2.环中元素的运算规则和环的非空子集S作成子环的充要条件:
二、释疑解难
1.设R是一个关于 代数运算十,·作成的环.应注意两个代数运算的地位是不平等的,是要讲究次序的.所以有时把这个环记为(R,十,·)(或者就直接说“R对十,·作成一个环”).但不能记为R,· ,十).因为这涉及对两个代数运算所要求满足条件的不同.我们知道,环的代数运算符号只是一种记号.如果集合只有二代数运算记为,⊕,又R对 作成一个交换群,对⊕满足结合律且⊕对满足左、右分配律,即
就是说,在环的定义里要留意两个代数运算的顺序.
2.设R对二代数运算十,·作成一个环.那么,R对“十”作成一个加群,这个加群记为(R,十);又R对“· ”作成一个半群,这个乍群记为(R,·).再用左、右分配律把二者联系起来就得环(R,十.·).
专业WORD.
三、习题4.1解答 1.
2.
专业WORD.
3.
4.
5.
专业WORD.
6.
7.
8.证明:循环环必是交换环,并且其子环也是循环环.
§4.2 环的零因子和特征
一、主要容
1.环的左、右零因子和特征的定义与例子.
2.若环R无零因子且阶大于1,则R中所有非零元素对加法有相同的阶.而且这个相同的阶不是无限就是一个素数.
这就是说,阶大于l且无零因子的环的特征不是无限就是一个素数. 有单位元的环的特征就是单位元在加群中的阶.
3.整环(无零因子的交换环)的定义和例子. 二、释疑解难
1.由教材关于零因子定义直接可知,如果环有左零因子,则R也必然有右零因子.反之亦然.
但是应注意,环中一个元素如果是一个左零因子,则它不一定是一个右零因子.例如,教材例l中的元素10就是一个例子.反之,一个右零因子也不一定是一个左零因子.例00xy00如,设置为由一切方阵
(x,yQ)
专业WORD.
对方阵普通加法与乘法作成的环.则易知10是R的一个右零因子,但它却不是R的左00零因子.
2.关于零因子的定义.
关于零因子的定义,不同的书往往稍有差异,关键在于是否把环中的零元也算作零因子.本教材不把零元算作零因子,而有的书也把零元算作零因子.但把非牢的零因子称做真零因子.这种不算太大的差异,读者看参考书时请留意.
3.关于整环的定义.
整环的定义在不同的书中也常有差异.大致有以下4种定义方法: 定义1 无零因子的交换环称为整环(这是本教材的定义方法). 定义2 阶大于l且无零因子的交换环,称为整环. 定义3 有单位元且无零因子的交换环,称为整环.
定义4 阶大于1、有单位元且无零因子的交换环,称为整环.
以上4种定义中,要求整环无零因子、交换是共同的,区别就在于是否要求有单位元和阶大于1.不同的定义方法各有利弊,不宜绝对肯定哪种定义方法好或不好.这种情况也许到某个时期会得到统一.但无论如何现在看不同参考书时应留意这种差异.
本教材采用定义1的方法也有很多原因,现举一例。本章§8定理1:设P是交换环R的一个理想.则
P是R的素理想R/P是整环.
这样看起来本定理表述显得干净利索.但若整环按定义2(或定义3、4)要求,那么以上定理表述就需变动.究竟要怎样变动,作为练习请读者自己给出. 。’
三、习题4.2解答 1.
2.
专业WORD.
3.
4.
5.
6.
专业WORD.
7.设R是一个无零因子的环.证明:若R偶数,则R的特征必为2.
8.证明:P—环无非零幂零元.
专业WORD.
§4.3 除环和域
一、主要容
1.除环和域的定义及例子.四元数除环.
2.有限环若有非零元素不是零因子,则必有单位元,且每个非零又非零因子的元素都是可逆元.
3.有单位元环的乘群(单位群)的定义和例子.
有单位元的环的全体可逆元作成的群,称为该环的乘群或单位群.
除环或域的乘群为其全体非零元作成的群;整数环Z的乘群为 Z﹡={1,-1};
数域上n阶全阵环的乘群为全体n阶可逆方阵对乘法作成的群;Gaus s整环的乘群为
U(Z[i]) ={1,-1,i-i,}. 二、释疑解难
1.阶大于l的有限环可分为两类: ”
1) 一类是有零因子的有限环.例如,有限集M(M>1)上的幂集环P(M),不仅是个有零因子的有限环,而且除单位元M外其余每个非零元素都是零因子;后面§5所讲的以合数n为模的剩余类环Zn也是一个有零因子的有限环.
2) 另一类就是无零因子的有限环.实际上根据本节推论和得邦定理可知,这种有限环就是有限域.例如,以素数p为模的剩余类环Zp以及教材第六章所介绍的伽罗瓦域都属于这种倩形.
这就是说,阶大子1的有限环或者有零因子或者无零因子,从而为域.
与群定义中要求两个方程ax=b与ya=b都有解不同,这里仅要求方程ax=b或y a=b (0≠a,b∈R)中有一个在R中有解即可.教材中利用方程ax=b有解得到R的全体非零元有右单位元且每个非零元素都有右逆元,从而得到R是除环.
如果利用方程ya=b在R中有解,则将得到R的全体非零元有左单位元且每个非零元都有左逆元,从而也得到只是除环.
3.关于有单位元环的单位群.
设R是阶大于l的有单位元的环.则显然
R是除环R的单位群是R-{0};
R是域 R-{0}是交换群. 显然,除环或域有“最大’’的单位群.又显然幂集环P(M)的单位群只有单位元(因其他元素那是零因子),它是“最小”的单位群.
三、习题4.3解答 1.证略. 2.证略.
3.证明:域和其子域有相同的单位元.
专业WORD.
即F与F1有相同的单位元.(也可由F﹡与F1有相同单位元直接得出)
4.
5.
6.
专业WORD.
§4 环的同态与同构
一、主要容
1.环的同态映射和同构映射的定义和例子 2.环同态映射的简单性质. 设是环R到环豆R的同态满射,则
1) (0)是R的零元,(-a)=-(a) (a∈R) ; 2)当R是交换环时,R也是交换环;
3)当R有单位元时,R也有;并且R的单位元的象是R的单位元.
3.在环同态映射下,是否有零因子不会传递.即若环R~R,则当R有零因子时,R可能没有,当R无零因子时,R却可能有.
二、释疑解难
1.在§1已经强调过,对于环的两个代数运算一定要区分前后顺序.同样,对于环的同态映射,也要注意其保持运算必须是:加法对加法,乘法对乘法.即
(a+b)=(a)+(b),
(ab)=(a)(b).
第一式中等号左边的加号“+”是环R的加法,而等号右边的加号“+”是环R的代数运算.二者虽然都用同一符号,但在实际例子中这两个代数运算却可能点很大差异,根本不是一回事.
对上述第二个式子中等号两端的乘法完全类似,不再赘述. 2.由于零因子在环同态映射下不具有传递性,因此,若环R~R,则当R为整环时,R不一定是整环;又当R不是整环时,R却可能是整环.教材中的例1和例2说明了这一点.
3.关于环的挖补定理,
三、习题4.4解答
专业WORD.
1. 证 略. 2.
3.
4.
5.
6.
专业WORD.
7.
§4.5模n剩余类环
一、主要容
2.循环环定义、例子和简单性质. ’
专业WORD.
1) 整数环及其子环以及剩余类环及其子环都是循环环.而且在同构意义下这也是全部的循环环.
2) 循环环是交换环,但不一定有单位元.而且这种环的子加群同子环、理想三者是一回事.因此,n阶循环环有且只有T(n)(n的正因数个数)个子环(理想).
二、释疑解难
1.剩余类环是一类很重要的有限环,因为这种环是一种具体的环,特别是它的特征、子环(理想)、零因子、可逆元和单位群等都很清楚.因此,在环的讨论里常常以它作为例子来加以利用,并说明问题.
2.整数环的任二不同的非零子环,作为加群,它们显然是同构的(因为它们都是无限循环群).但是,作为环,它们并不同构.因为,例如设
因此,S与T不能同构.
3.剩余类环Zn中任二不同的子环也不能同构.
事实上,Zn的任二不同阶的子环当然不能同构.又设置为Zn的任意k阶子环,则kn.但由于(Zn,+)是n阶循环群,从而对n的每个正因数k,(Zn,+)有且只有一个k阶子群,于是环Zn有且仅有一个k阶子环.因此,Zn的任二不同的于环当然不同构.
4.但是,有有限环存在,其有二不同子环是同构的.例如:令R是Z2上的2阶全阵环,则R=16,且易知
都是R的4阶子环,而且易知R1还是一个域.但是,R2无单位元(且不可换,又非零元都是零因子),因此,R1与R2不能同构.
此外易知:
也都是环R的4阶子环,而且R1,R2,R3,R4都是互不同构的.对此不再详述,兹留给读者
专业WORD.
作为练习.
有文献已经证明,互不同构的4阶环共有11个.对此不再赘述. 三、习题4.5解答
1.证明:同余类的乘法是Zn的一个代数运算.
2. 试指出环Z8中的可逆元和零因子,再给出它的所有子环.
3. 试给出Z10的所有子环,并指出它们各自的特征.
4.
5.
专业WORD.
6.
7. 证明:整数环的不同子环不同构, 证:见上面“释疑解难”部分中的2. 8.
专业WORD.
§4.6 理 想
一、主要容
1.左、右理想、理想的定义和例子. 2.单环的定义以及单环的一个重要性质.
设环R有单位元,则R上全阵环Rn×n的理想都是R中某个理想上的全阵环.由此可知: Rn×n是单环R是单环. 特别,除环和域上的全阵环都是单环.
3.由环中元素山a1,a2,…,am生成的理想〈a1,a2,…,am〉.特别,由一个元素a生成的主理想〈a〉.
在一般情况下,主理想〈a〉中元素的表达形式.在特殊环(交换环和有单位元的环)中〈a〉的元素表达形式如下:
1) 在有单位元的环R中:
4.理想的和与积仍为理想. 二、释疑解难
1.关于理想的乘法.
我们知道,如果A,B是群G的二子集或(正规)子群,则A与B的乘积是如下规定的:
AB={aba∈A,,b∈B}.
但当A,B是环R的理想时,如果仍按以上规定相乘,则一般而言其乘积AB不再是理想.由
于这个原因,环中理想的乘法规定为
AB={有限和
abii. ai∈A,,bi∈B}
2.对任意环R,则R至少有平凡理想{0}和R.通常把R本身叫做R的单位理想,
这是由于以下原因:对R的任意理想N,显然都有
专业WORD.
RNN, NRN.
但当R有单位元时,则显然又有RNN, NRN.从而有 RN=NR=N.
这就是说,此时R在理想乘法中的作用类似于数1在数的乘法中的作用. 3.设R为任意环,a∈R.则易知
N={rarR}
是R的一个左理想.若R是交换环,则当然.但是应注意,由于R不一定有单位元,故不一定有a∈N.从而也不能说N是由a生成的理想.
例1 设R为偶数环,a=4,则
专业WORD.
三、习题4.6解答 1. 证 略.
2. 证 1) 略.2) 由于
3.
4. 证 参考上面“释疑解难”部分3. 5.
专业WORD.
8. 8.证明:§4中例3中的环FN,当N为降秩方阵时,不是单环.
§4.7商环与环同态基本定理
一、主要容
专业WORD.
1.设 ,则所有(关于加法的)陪集x十N(x∈R)对于陪集的加法与乘法 (a+N)十(b+N)=(a+b)+N, (a+N)(b+N)=ab+N
作成一个环,称为R关于理想N的商环,记为R/N.
即在同构意义下,任何环能而且只能与其商环同态.此称为环同态基本定理或环的第一同构定理.
二、释疑解难
1.环同态基本定理有的书包括:但有的书不包括这一结论,而只指出: R~R,N为核R/NR.
也有书称此为“环的第一同态定理”或“环的第一同构定理”.甚至也有的书虽有此定理,但却未给予任何名称.不过多数的书均明示“环同态基本定理”且指出
“R~R,N为核R/NR”.
当然,这些问题是非本质的,只是在看参考书时留意其差异即可.
3.环的第三同构定理与群的第三同构定理也基本类似,只是其中有一部分转移到本节习题中去了.
以上环的三个同构定理,从叙述(条件和结论)和证明方法应多与群的三个同构定理作
比较,这样不仅可以加深理解而且可以增强记忆.
三、习题4.7解答 1.
2.
专业WORD.
3.
4.
故h+n∈K,H+NK.因此K=H十N,即H的象为(H+N)∕N.
专业WORD.
§4.8素理想和极想
一、主要容
1.素理想和极想的定义和例子. 整数环Z的素理想为{0}、Z以及由任意素数p生成的理想﹤p﹥,而且﹤p﹥ (p为任意素数)还是Z的全部极想.
﹤x﹥,﹤y﹥,﹤x,y﹥以及﹤x,y,2﹥都是环Z[ x,y ]的素理想,而且﹤x,y,2﹥还是Z[ x,y ]的一个极想.
2.交换环R中,理想P是素理想R/P是整环. 在一般环R中,理想N是极想R/N是单环.
3.有单位元的可换单环必为域.
1) 设R是有单位元的交换环,是极想. 2) 有单位元的交换环中极想必为素理想. 二、释疑解难
1.关于素理想的定义.
3.素理想和极想的意义和作用.
由教材定理1可知,若P是交换环R的素理想,则R/P是整环;由定理3、定理4和
专业WORD.
推论l可知,若N是有单位元的交换环R的极想,则R/N是一个域.商环与原环关系密切,又整环特别是域更是性质较好的特殊环类.这就是说,利用素理想和极想可得到一个与原环关系密切且性质又好的环,这对于研究原环R是非常重要和有利的.这就是研究素理想和极想的意义和作用.
三、习题4.8解答 1.
3.
专业WORD.
4.
5.
§4.9环与域上的多项式环
一、主要容
1.有单位元环R上多项式环R[x]的性质. 1) R[x]是整环R是整环.
2) R[x]中多项式的除法——左、右商及左、右余式. 2.域F上多项式的根.
专业WORD.
1) F上n次多项式在扩域根的个数≤n;
2) F上多项式f(x)在扩域无重根(f(x),f(x))=1.
二、释疑解难
1.本节均假定环R有单位元,但并未假定R可换.因此,在对R上的多项式在进行除法时,必须分左、右商和左、右余式.从本节习题中可知,一般说左右商不一定相等,左右余式也不一定相等.当然,如果R是交换环,它们则分别相等,就不必再分左与右了.
2.域上多项式的根的状况同我们所熟知的数域上多项式的情况一致.但是,环上多项式根的状况,由例子可知,就很不一样.例如,环R上一个n次多项式在R可能无根(这种情况并不奇怪,因为例如有理数域上多项式在有理数域也不一定有根),也可能有多于n个的根(这种情况在数域或域上多项式不会发生).不过,教材中除下一章惟一分解整环的多项式扩外.主要用到场上的多项式.例如教材第六章中的最小多项式和多项式的域就属于这种情况.
三、习题4.9解答 1.
2.
3. 解 经验算得知,f(x)在Z5上无根. 4.
5.
6.
专业WORD.
专业WORD.
一、主要容
1.环的外直和与直和的定义和例子 2.环是其子环的直和的充要条件.
专业WORD.
专业WORD.
专业WORD.
专业WORD.
5.
专业WORD.
6.证 1)
专业WORD.
专业WORD.
专业WORD.
专业WORD.
专业WORD.
专业WORD.
专业WORD.
专业WORD.
专业WORD.
专业WORD.
专业WORD.
专业WORD.