· 54 ·
天 然 气 工 业2019年 11 月
[15] 蒋明虎, 韩龙, 赵立新, 夏江峰, 马波, 徐磊. 内锥式三相旋
流分离器分离性能研究[J]. 化工机械, 2011, 38(4): 434-439. Jiang Minghu, Han Long, Zhao Lixin, Xia Jiangfeng, Ma Bo & Xu Lei. Study on separation performance of cone-typed three-phase cyclone separator[J]. Chemical Engineering & Machinery, 2011, 38(4): 434-439.
[16] Bokotko RP, Hupka J & Miller JD. Flue gas treatment for SO2
removal with air-sparged hydrocyclone technology[J]. Environ-mental Science & Technology, 2005, 39(4): 1184-11.
[17] Baker MW, Gopalakrishnan S, Rogovin Z & Miller JD. Hold-up
volume and mean residence time measurements in the air-sparged hydrocyclone[J]. Particulate Science and Technology, 1987, 5(4): 409-420.
[18] 王嘉麟, 陈春茂, 杨双春, 阎光绪, 郭绍辉. 充气水力旋流器
净化含油污水的实验与应用研究[J]. 现代化工, 2008, 28(3): 62-.
Wang Jialin, Chen Chunmao, Yang Shuangchun, Yan Guangxu & Guo Shaohui. Experimental study on purifying oily wastewa-ter by air-sparged hydrocyclone and its application[J]. Modern Chemical Industry, 2008, 28(3): 62-.
[19] Hupka J, Dabrowski B, Miller JD & Halbe D. Air-sparged hy-drocyclone (ASH) technology for cyanide recovery[J]. Mining Metallurgy & Exploration, 2005, 22(3): 135-139.
[20] Kuang SB, Chu KW, Yu AB & Vince A. Numerical study of liq-uid–gas–solid flow in classifying hydrocyclones: Effect of feed solids concentration[J]. Minerals Engineering, 2012, 31: 17-31. [21] Qi Z, Kuang SB & Yu AB. Numerical investigation of the sep-aration behaviors of fine particles in large dense medium cy-clones[J]. International Journal of Mineral Processing, 2015, 142: 35-45.
[22] Zhang C, Cui BY, Wei DZ, Zhao Q, Luo N & Feng YQ . Predict-
ing the optimum range of feed flow rate in a hydrocyclone using the method combined flow pattern and equation model[J]. Pow-der Technology, 2017, 319: 279-288.
[23] Neesse T & Dueck J. Air core formation in the hydrocyclone[J].
Minerals Engineering, 2007, 20(4): 349-354.
[24] 崔宝玉. 水力旋流器流场及分离过程的数值试验研究[D]. 沈
阳: 东北大学, 2014.
Cui Baoyu, Numerical study on flow field and separating process of hydrocyclone[D]. Shenyang: Northeastern University, 2014.[25] 褚良银, 罗茜, 余仁焕. 充气水力旋流器内压力分布的研究[J].
化工矿物与加工, 1994(5): 16-19.
Chu Liangyin , Luo Qian & Yu Renhuan . Study on pressure dis-tribution in air-sparged hydrocyclone[J]. Industrial Minerals & Processing, 1994(5): 16-19.
[26] 袁惠新, 方勇, 付双成, 叶娟, 方毅. 旋流器的微米级颗粒分
级性能分析[J]. 化工进展, 2017, 36(12): 4371-4377.
Yuan Huixin, Fang Yong, Fu Shuangcheng, Ye Juan & Fang Yi. Analysis of the classification performance of micron particles with hydrocyclones[J]. Chemical Industry and Engineering Pro-gress, 2017, 36(12): 4371-4377.
[27] 任连城, 孟江. 介质黏度对旋流组合涡流场性质的影响[J]. 石
油矿场机械, 2013, 42(12): 1-6.
Ren Liancheng & Meng Jiang. Effect of medium viscosity on the movement index of combined vortex in a hydrocyclone[J]. Oil Field Equipment, 2013, 42(12): 1-6.
[28] Nageswararao K. Modelling of hydrocyclone classifiers: A cri-tique of 'bypass' and corrected efficiency[J]. Powder Technology, 2016, 297: 106-114.
(修改回稿日期 2019-09-19 编 辑 孔 玲)
中国石化江汉油田公司一项页岩气国家标准立项成功
2019年11月7日,从中国石油化工股份有限公司江汉油田分公司研究院获悉,该院申报的国家标准《页岩气井取心及岩心采样推荐作法》立项成功。这是该院以第一起草单位承担的第4个页岩气国家标准。
该项国家标准是由《页岩气井取心及岩心采样推荐作法》能源局行业标准升级而来。2017年,该院联合中石油、中海油等几家单位起草编写了能源行业标准《页岩气井取心及采样推荐作法》,并迅速在四川盆地海相页岩气田实施推广,取得了良好的应用效果。为了给国内其他区域页岩气的勘探开发提供借鉴,该标准升级为国家标准,制定周期2年。
该标准主要针对页岩气井岩心页理发育、非均质强、样品类型多、采样时窗小、采样要求高等特征,该院开展“规范化”“科学化”页岩气井取心及岩心采样方法研究,形成相应的技术规范,为准确认识页岩地层地质特征,客观评价页岩地层含气性、资源潜力,有效指导页岩气勘探开发技术应用,提供客观准确的地质参数。
(天工 摘编自中国石化新闻网)