您好,欢迎来到百家汽车网。
搜索
您的当前位置:首页2019年十堰市中考数学试卷(解析版)

2019年十堰市中考数学试卷(解析版)

来源:百家汽车网
2019年十堰市中考数学试卷(解析版)

一、选择题(每小题3分,共30分) 1.(3分)下列实数中,是无理数的是( ) A.0

B.﹣3

C.

D.

【解答】解:A、0是有理数,故A错误; B、﹣3是有理数,故B错误;

C、是有理数,故C错误;

是无理数,故D正确;

故选:D. 2.(3分)如图,直线a∥b,直线AB⊥AC,若∠1=50°,则∠2=( )

D、

A.50° B.45° 【解答】解:∵直线AB⊥AC, ∴∠2+∠3=90°. ∵∠1=50°,

∴∠3=90°﹣∠1=40°, ∵直线a∥b,

∴∠1=∠3=40°, 故选:C.

C.40° D.30°

3.(3分)如图是一个L形状的物体,则它的俯视图是( )

A. B. C. D.

【解答】解:从上面看可得到两个左右相邻的长方形,并且左边的长方形的宽度远小于右面长方形的宽度.

故选:B. 4.(3分)下列计算正确的是( ) A.2a+a=2a2 B.(﹣a)2=﹣a2 C.(a﹣1)2=a2﹣1 D.(ab)2=a2b2

1

【解答】解:A、2a+a=3a,故此选项错误;

B、(﹣a)2=a2,故此选项错误;

C、(a﹣1)2=a2﹣2a+1,故此选项错误; D、(ab)2=a2b2,正确.

故选:D. 5.(3分)矩形具有而平行四边形不一定具有的性质是( )

A.对边相等 B.对角相等 C.对角线相等 D.对角线互相平分 【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等. 故选:C. 6.(3分)一次数学测试,某小组5名同学的成绩统计如下(有两个数据被遮盖):

组员 得分

甲 81

乙 77

丙 ■

丁 80

戊 82

平均成绩 80

众数 ■

则被遮盖的两个数据依次是( ) A.80,80 B.81,80 C.80,2 D.81,2 【解答】解:根据题意得:80×5﹣(81+77+80+82)=80(分), 则丙的得分是80分;众数是80, 故选:A. 7.(3分)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是( ) A.C.

﹣﹣

=15 =20

B.D.

﹣﹣

=15 =20

【解答】解:设原计划每天铺设钢轨x米,可得:

故选:A. 8.(3分)如图,四边形ABCD内接于⊙O,AE⊥CB交CB的延长线于点E,若BA平分∠DBE,AD=5,CE=,则AE=( )

A.3 B.3 【解答】解:连接AC,如图, ∵BA平分∠DBE, ∴∠1=∠2,

∵∠1=∠CDA,∠2=∠3, ∴∠3=∠CDA, ∴AC=AD=5,

C.4 D.2

2

∵AE⊥CB,

∴∠AEC=90°, ∴AE=故选:D.

=2

9.(3分)一列数按某规律排列如下:,,,,,,,,,,…,若第n个数为,则n=( ) A.50

B.60 C.62 D.71

【解答】解:,,,,,,,,,,…,可写为:,(,),(,,),(,,,),…, ∴

11

1

的,

∴第n个数为,则n=1+2+3+4+…+10+5=60, 故选:B.

10.(3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE的对称点恰好在OA上,则k=( )

11

A.﹣20 B.﹣16 C.﹣12 D.﹣8

【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:

则△BDE≌△FDE,

∴BD=FD,BE=FE,∠DFE=∠DBE=90° 易证△ADF∽△GFE ∴

∵A(﹣8,0),B(﹣8,4),C(0,4), ∴AB=OC=EG=4,OA=BC=8, ∵D、E在反比例函数y=的图象上,

3

∴E(,4)、D(﹣8,∴OG=EC=

,AD=﹣,

∴BD=4+,BE=8+

∴,

∴AF=,

在Rt△ADF中,由勾股定理:AD2+AF2=DF2 即:(﹣)2+22=(4+)2 解得:k=﹣12 故选:C.

二、填空题(每小题3分,共18分)

11.(3分)分解因式:a2+2a= a(a+2) . 【解答】解:a2+2a=a(a+2).

12.(3分)如图,已知菱形ABCD的对角线AC,BD交于点O,E为BC的中点,若OE=3,则菱形的周长为 24 .

【解答】解:∵四边形ABCD是菱形, ∴AB=BC=CD=AD,BO=DO, ∵点E是BC的中点,

∴OE是△BCD的中位线, ∴CD=2OE=2×3=6,

∴菱形ABCD的周长=4×6=24; 故答案为:24. 13.(3分)我市“创建文明城市”活动正如火如荼的展开.某校为了做好“创文”活动的宣传,就本校学

4

生对“创文”有关知识进行测试,然后随机抽取了部分学生的测试成绩进行统计分析,并将分析结果绘制成如下两幅不完整的统计图:

若该校有学生2000人,请根据以上统计结果估计成绩为优秀和良好的学生共有 1400 人. 【解答】解:∵被调查的总人数为28÷28%=100(人), ∴优秀的人数为100×20%=20(人), ∴估计成绩为优秀和良好的学生共有2000×故答案为:1400.

14.(3分)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m= ﹣3或4 .

【解答】解:根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24, (2m﹣1)2﹣49=0,

(2m﹣1+7)(2m﹣1﹣7)=0, 2m﹣1+7=0或2m﹣1﹣7=0, 所以m1=﹣3,m2=4.

故答案为﹣3或4. 15.(3分)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为 6π .

=1400(人),

【解答】解:由图可得, 图中阴影部分的面积为:

=6π,

故答案为:6π. 16.(3分)如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋转,当∠ABF最大时,S△ADE= 6 .

5

【解答】解:作DH⊥AE于H,如图,

∵AF=4,当△AEF绕点A旋转时,点F在以A为圆心,4为半径的圆上, ∴当BF为此圆的切线时,∠ABF最大,即BF⊥AF, 在Rt△ABF中,BF=∵∠EAF=90°,

∴∠BAF+∠BAH=90°, ∵∠DAH+∠BAH=90°, ∴∠DAH=∠BAF, 在△ADH和△ABF中

∴△ADH≌△ABF(AAS), ∴DH=BF=3,

∴S△ADE=AE•DH=×3×4=6. 故答案为6.

=3,

三、解答题(本题有9个小题,共72分) 17.(5分)计算:(﹣1)3+|1﹣

|+

【分析】原式利用乘方的意义,绝对值的代数意义,以及立方根定义计算即可求出值. 【解答】解:原式=﹣1+﹣1+2=.

【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键. 18.(6分)先化简,再求值:(1﹣)÷(

﹣2),其中a=

+1.

【分析】根据分式的减法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题. 【解答】解:(1﹣)÷(==

﹣2)

6

=当a=

+1时,原式=

【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 19.(7分)如图,拦水坝的横断面为梯形ABCD,AD=3m,坝高AE=DF=6m,坡角α=45°,β=30°,求BC的长.

【分析】过A点作AE⊥BC于点E,过D作DF⊥BC于点F,得到四边形AEFD是矩形,根据矩形的性质得到AE=DF=6,AD=EF=3,解直角三角形即可得到结论. 【解答】解:过A点作AE⊥BC于点E,过D作DF⊥BC于点F, 则四边形AEFD是矩形,有AE=DF=6,AD=EF=3, ∵坡角α=45°,β=30°,

∴BE=AE=6,CF=DF=6,

∴BC=BE+EF+CF=6+3+6=9+6, ∴BC=(9+6)m,

答:BC的长(9+6)m.

【点评】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形和矩形,利用锐角三角函数的概念和坡度的概念求解. 20.(7分)第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别. (1)若从第一盒中随机取出1个球,则取出的球是白球的概率是

(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率. 【分析】(1)直接利用概率公式计算可得;

(2)先画出树状图展示所有6种等可能的结果数,再找出恰好1个白球、1个黄球的结果数,然后根据概率公式求解;

【解答】解:(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是, 故答案为:;

(2)画树状图为:

共有6种等可能的结果数,取出的两个球中恰好1个白球、1个黄球的有3种结果,

7

所以取出的两个球中恰好1个白球、1个黄球的概率为.

【点评】本题考查了列表法与树状图法:运用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率. 21.(7分)已知于x的元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2. (1)求a的取值范围;

(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.

【分析】(1)根据根的判别式,可得到关于a的不等式,则可求得a的取值范围;

(2)由根与系数的关系,用a表示出两根积、两根和,由已知条件可得到关于a的不等式,则可求得a的取值范围,再求其值即可.

【解答】解:(1)∵关于x的一元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2, ∴△>0,即(﹣6)2﹣4(2a+5)>0, 解得a<2;

(2)由根与系数的关系知:x1+x2=6,x1x2=2a+5, ∵x1,x2满足x12+x22﹣x1x2≤30, ∴(x1+x2)2﹣3x1x2≤30, ∴36﹣3(2a+5)≤30, ∴a≥﹣,∵a为整数,

∴a的值为﹣1,0,1. 【点评】本题主要考查根与系数的关系及根的判别式,利用根的判别式求得k的取值范围是解题的关键,注意方程根的定义的运用. 22.(8分)如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为C延长线上一点,且∠CDE=∠BAC.

(1)求证:DE是⊙O的切线;

(2)若AB=3BD,CE=2,求⊙O的半径.

【分析】(1)根据圆周角定理得出∠ADC=90°,按照等腰三角形的性质和已知的2倍角关系,证明

8

∠ODE为直角即可;

(2)通过证得△CDE∽△DAE,根据相似三角形的性质即可求得. 【解答】解:(1)如图,连接OD,AD, ∵AC是直径, ∴∠ADC=90°, ∴AD⊥BC, ∵AB=AC,

∴∠CAD=∠BAD=∠BAC, ∵∠CDE=∠BAC.

∴∠CDE=∠CAD, ∵OA=OD,

∴∠CAD=∠ADO,

∵∠ADO+∠ODC=90°, ∴∠ODC+∠CDE=90° ∴∠ODE=90°

又∵OD是⊙O的半径 ∴DE是⊙O的切线;

(2)解:∵AB=AC,AD⊥BC, ∴BD=CD, ∵AB=3BD, ∴AC=3DC,

设DC=x,则AC=3x, ∴AD=

=2

x,

∵∠CDE=∠CAD,∠DEC=∠AED, ∴△CDE∽△DAE, ∴∴DE=4

,即

=,

,x=

∴AC=3x=14, ∴⊙O的半径为7.

【点评】本题考查了圆的切线的判定定理、圆周角定理、等腰三角形的性质、三角形相似的判定和性质,

9

解题的关键是作出辅助线构造直角三角形或等腰三角形. 23.(10分)某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50. (1)当31≤x≤50时,y与x的关系式为

(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?

(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.

【分析】本题是通过构建函数模型解答销售利润的问题.

(1)依据题意利用待定系数法,易得出当31≤x≤50时,y与x的关系式为:y=

x+55,

(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.

(3)要使第31天到第35天的日销售利润W(元)随x的增大而增大,则对称轴=即可

【解答】解:

(1)依题意,当x=36时,y=37;x=44时,y=33, 当31≤x≤50时,设y=kx+b, 则有

,解得

≥35,求得a∴y与x的关系式为:y=(2)依题意, ∵W=(y﹣18)•m ∴

x+55

整理得,

当1≤x≤30时, ∵W随x增大而增大

∴x=30时,取最大值W=30×110+1100=4400 当31≤x≤50时,

W=

x2+160x+1850=

<0

∴x=32时,W取得最大值,此时W=4410

综上所述,x为32时,当天的销售利润W(元)最大,最大利润为4410元

10

(3)依题意,

W=(y+a﹣18)•m=

∵第31天到第35天的日销售利润W(元)随x的增大而增大 ∴对称轴x=

≥35,得a≥3

故a的最小值为3.

【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值). 24.(10分)如图1,△ABC中,CA=CB,∠ACB=α,D为△ABC内一点,将△CAD绕点C按逆时针方向旋转角α得到△CBE,点A,D的对应点分别为点B,E,且A,D,E三点在同一直线上. (1)填空:∠CDE=

(用含α的代数式表示);

(2)如图2,若α=60°,请补全图形,再过点C作CF⊥AE于点F,然后探究线段CF,AE,BE之间的数量关系,并证明你的结论;

(3)若α=90°,AC=5,且点G满足∠AGB=90°,BG=6,直接写出点C到AG的距离.

【分析】(1)由旋转的性质可得CD=CE,∠DCE=α,即可求解;

(2)由旋转的性质可得AD=BE,CD=CE,∠DCE=60°,可证△CDE是等边三角形,由等边三角形的性质可得DF=EF=

,即可求解;

(3)分点G在AB的上方和AB的下方两种情况讨论,利用勾股定理可求解. 【解答】解:(1)∵将△CAD绕点C按逆时针方向旋转角α得到△CBE ∴△ACD≌△BCE,∠DCE=α ∴CD=CE ∴∠CDE=故答案为:(2)AE=BE+理由如下:如图,

CF

11

∵将△CAD绕点C按逆时针方向旋转角60°得到△CBE ∴△ACD≌△BCE

∴AD=BE,CD=CE,∠DCE=60° ∴△CDE是等边三角形,且CF⊥DE ∴DF=EF=

∵AE=AD+DF+EF ∴AE=BE+

CF

(3)如图,当点G在AB上方时,过点C作CE⊥AG于点E,

∵∠ACB=90°,AC=BC=5, ∴∠CAB=∠ABC=45°,AB=10 ∵∠ACB=90°=∠AGB

∴点C,点G,点B,点A四点共圆 ∴∠AGC=∠ABC=45°,且CE⊥AG ∴∠AGC=∠ECG=45° ∴CE=GE

∵AB=10,GB=6,∠AGB=90° ∴AG=

=8

∵AC2=AE2+CE2, ∴(5

)2=(8﹣CE)2+CE2,

∴CE=7(不合题意舍去),CE=1

若点G在AB的下方,过点C作CF⊥AG, 同理可得:CF=7

∴点C到AG的距离为1或7.

【点评】本题是几何变换综合题,考查了全等三角形的性质,旋转的性质,等边三角形的性质,勾股定理,利用勾股定理列出方程是本题的关键.

25.(12分)已知抛物线y=a(x﹣2)2+c经过点A(2,0)和C(0,),与x轴交于另一点B,顶点

12

为D.

(1)求抛物线的解析式,并写出D点的坐标;

(2)如图,点E,F分别在线段AB,BD上(E点不与A,B重合),且∠DEF=∠A,则△DEF能否为等腰三角形?若能,求出BE的长;若不能,请说明理由; (3)若点P在抛物线上,且

=m,试确定满足条件的点P的个数.

【分析】(1)利用待定系数法,转化为解方程组即可解决问题.

(2)可能.分三种情形①当DE=DF时,②当DE=EF时,③当DF=EF时,分别求解即可.

(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设

P[n,﹣(n﹣2)2+3],构建二次函数求出△PBD的面积的最大值,再根据对称性即可解决问题.

【解答】解:(1)由题意:,

解得,

(x﹣2)2+3,

∴抛物线的解析式为y=﹣∴顶点D坐标(2,3).

(2)可能.如图1,

∵A(﹣2,0),D(2,3),B(6,0), ∴AB=8,AD=BD=5,

①当DE=DF时,∠DFE=∠DEF=∠ABD,

∴EF∥AB,此时E与B重合,与条件矛盾,不成立. ②当DE=EF时, 又∵△BEF∽△AED, ∴△BEF≌△AED,

13

∴BE=AD=5

③当DF=EF时,∠EDF=∠DEF=∠DAB=∠DBA, △FDE∽△DAB, ∴∴

==

, =,

∵△AEF∽△BCE ∴

=,

时,△CFE为等腰三角形.

∴EB=AD=

答:当BE的长为5或

(3)如图2中,连接BD,当点P在线段BD的右侧时,作DH⊥AB于H,连接PD,PH,PB.设

P[n,﹣(n﹣2)2+3],

则S△PBD=S△PBH+S△PDH﹣S△BDH=×4×[﹣(n﹣4)2+, ∵﹣<0,

∴n=4时,△PBD的面积的最大值为, ∵

=m,

(n﹣2)2+3]+×3×(n﹣2)﹣×4×3=﹣

∴当点P在BD的右侧时,m的最大值=观察图象可知:当0<m<当m=

=,

时,满足条件的点P的个数有4个,

时,满足条件的点P的个数有3个,

14

当m>

时,满足条件的点P的个数有2个(此时点P在BD的左侧).

15

因篇幅问题不能全部显示,请点此查看更多更全内容

Copyright © 2019- baijiahaobaidu.com 版权所有 湘ICP备2023023988号-9

违法及侵权请联系:TEL:199 18 7713 E-MAIL:2724546146@qq.com

本站由北京市万商天勤律师事务所王兴未律师提供法律服务